作物学报 ›› 2010, Vol. 36 ›› Issue (3): 449-456.doi: 10.3724/SP.J.1006.2010.00449
李宏伟,李滨,郑琪,李振声*
LI Hong-Wei,LI Bin,ZHENG Qi,LI Zhen-Sheng*
摘要:
[1] Ögren E, Rosenqvist E. On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosyn Res, 1992, 33: 63-71 [2] Ji B-H(季本华), Jiao D-M(焦德茂). Varietal differences in photochemical efficiency of PSII and features of CO2 exchange in rice leaves under photoinhibitory conditions. Chin J Rice Sci (中国水稻科学), 1998, 12(2): 109-114 (in Chinese with English abstract) [3] Sims D A, Pearcy R W. Respons of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot, 1992, 79: 449-455 [4] Chow W S, Anderson J M. Photosynthetic responses of Pisum sativum to an increase in irradiance during growth: I. Photosynthetic activities. Aust J Plant Physiol, 1987, 14: 1-8 [5] Murchie E H Hubbart S Peng S Horton P. Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. J Exp Bot, 2005, 56: 449-460 [6] Anderson J M, Chow W S, Park Y I. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res, 1995, 46: 129-139 [7] Murchie E H, Horton P. Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant Cell Environ, 1998, 21: 139-148 [8] Demmig-Adams B, Adams III W W. The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci, 1996, 1: 21-26 [9] Niyogi K K. Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 333-359 [10] Havaux M, Niyogi K K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA, 1999, 96: 8762-8767 [11] Li X P, Björkman O, Shih C, Grossman A R, Rosenquist M, Jansson S, Niyogi K K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 403: 391-395 [12] Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA, 100: 4921-4926 [13] Wang S W, Xu C C, Bai K Z, Zhang Q D, Li L B, Kuang T Y, Li J Y, Li Z S. Comparative study on photoinhibtion between two wheat genotypes. Acta Bot Sin, 2000, 42: 1300-1303 [14] Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Zhang A M, Li Z S, Kuang T Y, Lu C M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: A comparison between a hybridization line and its parents grown under field conditions. Plant Sci, 2006, 171: 389-397 [15] Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Li Z S, Kuang T Y, Lu C M. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. J Plant Physiol, 2007, 164: 318-326 [16] An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73-84 [17] Arnon D I. Copper enzymes in isolated chloroplasts polyphenoxidase in Beta vulgris. Plant Physiol, 1949, 24: 1-5 [18] Appenroth K J, Stöckel J, Srivastava A, Strasser R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Poll, 2001, 115: 49-64 [19] Force L, Critchley C, Rensen J J S. New fluorescence parameters for monitoring photosynthesis in plants. Photosynth Res, 2003, 78: 17-33 [20] Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol, 1996, 112: 1631-1640 [21] Wang A-G(王爱国), Luo G-H(罗广华), Shao C-B(邵从本), Man S-J(曼淑君), Guo J-Y(郭俊彦). A study on the superoxide dismutase of soybean seeds. Acta Photophysiol Sin(植物生理学报), 1983, 9(1): 77-84 (in Chinese with English abstract) [22] Walters R G, Horton P. Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of the photosynthetic apparatus. Planta, 1994, 195: 248-256 [23] Bailey S, Walters R G, Jansson S, Horton P. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta, 2001, 213: 794-801 [24] Lichtenthaler H K, Kuhn G, Prenzel U, Buschmann C, Meier D. Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. Physiol Plant, 1982, 56: 183-188 [25] Kendall E J, McKersie B D. Free radical and freezing injury to cell membranes of winter wheat. Physiol Plant, 1989, 76: 86-94 [26] Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 83-116 [27] Leong T Y, Anderson J M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities: I. Study on the distribution of chlorophyll-protein complexes. Photosyn Res, 1984, 5: 105-115 [28] Mäenpää P, Andersson B. Photosystem II Heterogeneity and Long-term Acclimation of Light-harvesting. Germany: Zeitschrift fuer Naturforschung, Section C, 1989. pp 403-406 [29] Pötter E, Kloppstech K. Effects of light stress on the expression of early light inducible proteins in barley. Eur J Biochem, 1993, 214: 779-786 [30] Guo L-W(郭连旺), Xu D-Q(许大全), Shen Y-G(沈允钢). Photoinhibition of photosynthesis without net loss of D1 protein in wheat leaves under field conditions. Acta Bot Sin (植物学报), 1996, 38(3): 196-202 (in Chinese with English abstract) Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem, 2002, 277: 22750-22758 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[14] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[15] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
|