欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 449-456.doi: 10.3724/SP.J.1006.2010.00449

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦幼苗从低光到强光适应过程中光合和抗氧化酶变化

李宏伟,李滨,郑琪,李振声*   

  1. 中国科学院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室,北京100101
  • 收稿日期:2009-09-25 修回日期:2010-01-09 出版日期:2010-03-12 网络出版日期:2010-01-22
  • 通讯作者: 李振声,E-mail:zsli@genetics.ac.cn,Tel:010-64889381
  • 基金资助:

    本研究由国家自然科学基金项目(30330390),国家重点基础研究计划(973计划)项目(2002CB111304,2009CB118506),中国科学院知识创新工程(KSCX1-YW-03,KSCX2-YW-N-046)和引进国际先进农业科学技术计划(948计划)项目(2006G2)资助。

Variation in Photosynthetic Traits and Antioxidant Enzyme Activities of Wheat Seedlings Transferred from Low to High Light Growth Condition

LI Hong-Wei,LI Bin,ZHENG Qi,LI Zhen-Sheng*   

  1. State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2009-09-25 Revised:2010-01-09 Published:2010-03-12 Published online:2010-01-22
  • Contact: LI Zhen-Sheng,E-mail:zsli@genetics.ac.cn,Tel:010-64889381

摘要:

为了研究小麦对强光的响应过程,以小偃54幼苗为试材,检测了强光处理01382448 h的光合速率、叶绿素含量、最大光化学效率、抗氧化酶活性及色素结合蛋白基因的表达变化。结果表明,当小麦从低光转入强光后,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)变化呈单峰曲线,均在强光8 h达到最大值,而在强光48 h下降至强光处理前的水平;叶绿素b含量降低,叶绿素a/b升高;PSII最大光化学效率降低,热耗散增强;抗氧化酶如SODCATAPXGR活力诱导增强,均在强光处理48 h达最大值。强光处理8 hLHCII亚基基因表达受到明显抑制,强光处理48 h降至最低,早期光诱导蛋白基因在强光处理3 h诱导表达,而在强光处理8 h后表达量降低,叶黄素循环的关键酶VDEZEP基因的表达也在强光处理48 h降至最低。

关键词: 小麦, 强光, 光氧化, 基因表达

Abstract:

When plants absorb excessive light energy, a large number of reactive oxygen species is generally produced resulting in the degradation of DNA, proteins, and pigments in plants. For wheat (Triticum aestivum L.) grown in North China, the photooxidation induced by high light (HL) during grain-filling period usually causes great losses in grain yield. It is important to understand the mechanism of wheat plant in response to HL for HL-tolerant breeding in wheat. Xiaoyan 54, a wheat cultivar with high resistance to HL, is an ideal material to disclose photosynthesis characteristics of wheat when exposed to HL. In this study, the third-leaf seedlings of Xiaoyan 54 were grown under the condition low light to HL in a growth chamber. The seedlings were sampled at 0, 1, 3, 8, 24, and 48 h of HL treatment. Simultaneously, the net photosynthetic rate (Pn), chlorophyll content (Chl), and fluorescence parameters were measured with the second leaf. The activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR), were also determined. In addition, expression pattern of the pigment binding protein related genes were evaluated. The results showed that Pn increased in the photosynthetic induction stage that was from 0 h to 8 h of HL treatment, but decreased continuously during the photoinhibition stage that was from 8 h to 48 h of HL treatment. The maximum Pn value of 18 μmol CO2 m-2 s-1 was observed at the 8 h timepoint of HL treatment. The parameters Gs, Ci, and Tr changed similarly to Pn and reached the peaks at the 8 h timepoint of treatment. The contents of total chlorophyll and chlorophyll a only changed slightly during the 48 h of HL treatment. In contrast, chlorophyll b reduced significantly from 24 h to 48 h of treatment, and the ratio of chlorophyll a/b increased from 8 h to 48 h of HL treatment. At one hour of HL treatment, the maximum quantum efficiency of PSII (Fv/Fm), the maximum fluorescence (Fm), and variable fluorescence (Fv) were down-regulated significantly, when the heat dissipation was enhanced. The activities of SOD, CAT, APX, and GR were induced to higher levels with the highest value at 24 h timepoint of HL treatment. From 8 h to 48 h of HL treatment, the Talhcb genes, encoding LHCII subunits, were down-regulated at the RNA levels. At the early stage of HL treatment (0–3 h), TaELIP1 and TaELIP3 were induced, but repressed from 8 h to 48 h. As key enzymes in xanthophyll cycle, the transcripts of TaVDE and TaZEP responded differently to HL treatment. The expression of TaVDE decreased remarkably at 8 h of HL treatment and maintained a rather low level till 48 h. However, the expression of TaZEP showed an increase trend from 3 h to 24 h, and decreased at 48 h. In conclusion, when wheat seedlings exposed to continuous HL for 48 h, photooxidative stress occurred resulting in reductions of Pn, Fv/Fm, Chl b, and the expressions of pigment binding protein genes, but activation of the antioxidantenzymes.

Key words: Wheat, High light, Photooxidation, Gene expression

[1] Ögren E, Rosenqvist E. On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosyn Res, 1992, 33: 63-71

[2] Ji B-H(季本华), Jiao D-M(焦德茂). Varietal differences in photochemical efficiency of PSII and features of CO2 exchange in rice leaves under photoinhibitory conditions. Chin J Rice Sci (中国水稻科学), 1998, 12(2): 109-114 (in Chinese with English abstract)

[3] Sims D A, Pearcy R W. Respons of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot, 1992, 79: 449-455

[4] Chow W S, Anderson J M. Photosynthetic responses of Pisum sativum to an increase in irradiance during growth: I. Photosynthetic activities. Aust J Plant Physiol, 1987, 14: 1-8

[5] Murchie E H Hubbart S Peng S Horton P. Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. J Exp Bot, 2005, 56: 449-460

[6] Anderson J M, Chow W S, Park Y I. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res, 1995, 46: 129-139

[7] Murchie E H, Horton P. Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant Cell Environ, 1998, 21: 139-148

[8] Demmig-Adams B, Adams III W W. The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci, 1996, 1: 21-26

[9] Niyogi K K. Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 333-359

[10] Havaux M, Niyogi K K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA, 1999, 96: 8762-8767

[11] Li X P, Björkman O, Shih C, Grossman A R, Rosenquist M, Jansson S, Niyogi K K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 403: 391-395

[12] Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA, 100: 4921-4926

[13] Wang S W, Xu C C, Bai K Z, Zhang Q D, Li L B, Kuang T Y, Li J Y, Li Z S. Comparative study on photoinhibtion between two wheat genotypes. Acta Bot Sin, 2000, 42: 1300-1303

[14] Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Zhang A M, Li Z S, Kuang T Y, Lu C M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: A comparison between a hybridization line and its parents grown under field conditions. Plant Sci, 2006, 171: 389-397

[15] Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Li Z S, Kuang T Y, Lu C M. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. J Plant Physiol, 2007, 164: 318-326

[16] An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73-84

[17] Arnon D I. Copper enzymes in isolated chloroplasts polyphenoxidase in Beta vulgris. Plant Physiol, 1949, 24: 1-5

[18] Appenroth K J, Stöckel J, Srivastava A, Strasser R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Poll, 2001, 115: 49-64

[19] Force L, Critchley C, Rensen J J S. New fluorescence parameters for monitoring photosynthesis in plants. Photosynth Res, 2003, 78: 17-33

[20] Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol, 1996, 112: 1631-1640

[21] Wang A-G(王爱国), Luo G-H(罗广华), Shao C-B(邵从本), Man S-J(曼淑君), Guo J-Y(郭俊彦). A study on the superoxide dismutase of soybean seeds. Acta Photophysiol Sin(植物生理学报), 1983, 9(1): 77-84 (in Chinese with English abstract)

[22] Walters R G, Horton P. Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of the photosynthetic apparatus. Planta, 1994, 195: 248-256

[23] Bailey S, Walters R G, Jansson S, Horton P. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta, 2001, 213: 794-801

[24] Lichtenthaler H K, Kuhn G, Prenzel U, Buschmann C, Meier D. Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. Physiol Plant, 1982, 56: 183-188

[25] Kendall E J, McKersie B D. Free radical and freezing injury to cell membranes of winter wheat. Physiol Plant, 1989, 76: 86-94

[26] Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 83-116

[27] Leong T Y, Anderson J M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities: I. Study on the distribution of chlorophyll-protein complexes. Photosyn Res, 1984, 5: 105-115

[28] Mäenpää P, Andersson B. Photosystem II Heterogeneity and Long-term Acclimation of Light-harvesting. Germany: Zeitschrift fuer Naturforschung, Section C, 1989. pp 403-406

[29] Pötter E, Kloppstech K. Effects of light stress on the expression of early light inducible proteins in barley. Eur J Biochem, 1993, 214: 779-786

[30] Guo L-W(郭连旺), Xu D-Q(许大全), Shen Y-G(沈允钢). Photoinhibition of photosynthesis without net loss of D1 protein in wheat leaves under field conditions. Acta Bot Sin (植物学报), 1996, 38(3): 196-202 (in Chinese with English abstract)
Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem, 2002, 277: 22750-22758
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!