欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 911-917.doi: 10.3724/SP.J.1006.2010.00911

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TaPIM1基因的克隆及其转基因烟草的抗病性分析

周贤尧1,2,董 娜1,3,**,刘红霞1,张怀渝2,张增艳1,*   

  1. 1中国农业科学院作物科学研究所/农作物基因资源与教育改良国家重大科学
  • 收稿日期:2009-12-29 修回日期:2010-03-29 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781
  • 基金资助:

    本研究由国家自然科学基金项目(30871523)和国家转基因植物研究与产业化专项(2008ZX08002-001)资助。

Cloning of Wheat TaPIM1 Gene and Analysis of Disease Resistance in TaPIM1 Transgenic Tobacco

ZHOU Xian-Yao1,2,DONG Na1,3**,LIU Gong-Xia1,ZHANG Fu-Yu2,ZHANG Ceng-Yan1*   

  1. 1National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Crop Genetic and Breeding,Ministry of Agriculture/Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;2State Key Laboratory of Plant Breeding and Genetics,Sichuan Agricultural University,Ya'an Sichuan 625014,China;3Henan Institute of Science and Technology,Xinxiang 453003,China
  • Received:2009-12-29 Revised:2010-03-29 Published:2010-06-12 Published online:2010-04-14
  • Contact: ZHANG Zeng-yan,E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781

摘要:

TaPIM1从小麦中克隆获得的1个病原诱导的小麦MYB基因,编码由323个氨基酸残基组成的蛋白TaPIM1TaPIM1具有R2R3MYB转录因子的典型结构,即2个保守的MYB DNA结合域(R2R3)、核定位位点和酸性激活区。TaPIM1的全长氨基酸序列与已克隆MYB蛋白的一致性仅为43.69%以下,为植物MYB转录因子家族R2R3亚群的一个新成员。小麦纹枯病菌(Rhizoctonia cerealis)、根腐病菌(Bipolaris sorokiniana)侵染可快速诱导抗病小麦中TaPIM1基因的上调表达,说明TaPIM1可能参与小麦对纹枯病菌、根腐病菌的防御反应。将TaPIM1基因构建到由组成型强启动子CaMV35S控制的双子叶转化载体pBI121通过农杆菌介导法将其转入烟草W38品系。通过卡那霉素抗性筛选和PCR检测,鉴定出转TaPIM1基因烟草T0代株系M66M102M11012个株系。对转基因烟草T1代株系进行PCRRT-PCR分析和青枯病菌抗性分析,结果表明,TaPIM1超量表达的转基因烟草株系M66M102M110对青枯病菌(Ralstonia solanacearum)的抗性显著高于未转基因烟草对照TaPIM1正向调控烟草对某些病原菌的防御反应。

关键词: 小麦, MYB转录因子, 转基因烟草, 青枯病抗性

Abstract:

In plants,MYB transcription factors play various roles in developmental processes and in responses to biotic and abiotic stresses. In this paper, a pathogen-induced MYB gene of wheat, TaPIM1, protein TaPIM1 consisting of 323 amino acids. TaPIM1 protein contains two MYB DNA binding domains (R2, R3), two nuclear localization sites and two transcription activation domains. The entire sequence of TaPIM1 protein shares a low identity of below 43.69% with other plant MYB proteins. TaPIM1 is a new member of R2R3 type of MYB transcription factors of transcription families. The transcript of TaPIM1 was obviously upregulated after challenge with fungal pathogens Rhizoctonia cerealis or Bipolaris sorokiniana, respectively. The gene transformation vector pBI-35S:TaPIM1 was constructed, in which the TaPIM1 was driven by the CaMV 35S promoter. The vector pBI-35S:TaPIM1 wastransferred into tobacco cultivar W38 by Agrobacterium-mediated transformation method. Twelve TaPIM1 transgenic tobacco lines, such as M66, M102 and M110, were obtained through screening. The T1 plants of these transgenic lines were subjected to PCR, RT-PCR analyses and evaluated for Ralstonia solanacearum resistance. The results showed that three transgenic lines, including M66, M102, and M110, overexpressed TaPIM1 and showed significantly enhanced resistance to R.  solanacearum compared with the host tobacco W38 plants.The resistance degree was correlated with the transcript level of the TaPIM1 inthese transgenic lines. These results suggested that TaPIM1 may positively modulate defense response to certain pathogens.was isolated from cDNAs of wheat leaves inoculated with Rhizoctonia cerealis. TaPIM1 gene encodes a

Key words: Wheat, MYB transcription factor, Transgenic tobacco, Resistance to Ralstonia solanacearum

[1]Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat[J].J Exp Bot

[2]Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K. Bipolaris sorokiniana,a cereal pathogen of global concern: Cytological and molecular approaches towards better control[J].Mol Plant Pathol

[3]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annu Rev Phytopathol

[4]López M A, Bannenberg G, Castresana C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival[J].Curr Opin Plant Biol

[5]Zhang Z Y, Yao W L, Dong N, Liang H X, Liu H X, Huang R F. A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments[J].J Exp Bot

[6]Dong N(董娜), Zhang Z-Y(张增艳), Xin Z-Y(辛志勇). Isolation and expression analysis of a pathogen-induced ERF gene in Triticum aestivum L. Sci Agric Sin (中国农业科学), 2008, 41(4): 946-953 (in Chinese with English abstract)

[7]Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3 MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis[J].Plant Cell

[8]Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CT method. Methods.2001, 25: 402-408

[9]Hoekema P, Hirsch P, Hooykaas R, Schilperoort A. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 1983, 3 03: 179-180

[10]Zhang H B, Zhang D B, Chan J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralatonia solanacearum. Plant Mol Biol, 2004, 55: 825-834

[11]Yang Y-C(杨友才), Zhou Q-M(周清明), Zhu L-S(朱列书). On tobacco varieties resistance and resistance heredity to bacterial wilt (Ralastonia solanacearum)

[J].J Hunan Agric Univ (Nat Sci Edn)(湖南农业大学学报·自然科学版.2005, 31(4):381-383

[12]Wang X-Q(王希庆), Chen B-J(陈柏君), Yin L-P(印丽萍). The plant MYB transcription factors. Biotechnol Bull (生物技术通报), 2003, (2): 22-25(in Chinese with English abstract)

[13]Eulgem T, Somssich I. Network of WRKY transcription factors in defense signaling[J].Curr Opin Plant Biol

[14]Huang Z-J(黄泽军), Huang R-F(黄荣峰), Huang D-F(黄大昉).ERF transcription factors and their roles in plant defense responses. Acta Phytopathol Sin (植物病理学报), 2004, 34(3): 193-198 (in Chinese with English abstract)

[15]Zhang G, Chen M, Chen X, Xu Z, Guan S, Li L C, Li A, Guo J, Mao L, Ma Y. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot, 2008, 59: 4095-4107

[16]Zuo K J, Qin J, Zhao J Y, Ling H, Zhang L D, Cao Y F, Tang K X. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 2007, 391: 80-90

[17]Liang H, Lu Y, Liu H, Wang F, Xin Z, Zhang Z. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses[J].J Exp Bot

[18]Lee M W, Qi M, Yang Y. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death[J].Mol Plant Microbe Interact

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!