欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 905-910.doi: 10.3724/SP.J.1006.2010.00905

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆细胞质雄性不育系MADS-box基因的分离分析

韩利涛,姜伟,杨守萍*,喻德跃,盖钧镒*   

  1. 南京农业大学国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2009-12-21 修回日期:2010-03-19 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 杨守萍, E-mail: spyang@njau.edu.cn, Tel: 025-84396463; 盖钧镒, E-mail: sri@njau.edu.cn, Tel: 025-84395405
  • 作者简介:hanlitao0210@yahoo.com.cn
  • 基金资助:
    本研究由国家高技术研究发展计划(863计划)项目(2009AA101106)作物遗传与种质创新国家重点实验室开放基金(ZW2007004)资助。

Isolation and Analysis of MADS-box Gene from Soybean (Glycine max L. Merr.) Cytoplasmic Male Sterile Line

 HAN Li-Chao, JIANG Wei, YANG Shou-Ping, YU De-Ti, GAI Jun-Yi   

  1. National Center for Soybean Improvement,National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2009-12-21 Revised:2010-03-19 Published:2010-06-12 Published online:2010-04-14
  • Contact: YANG Shuo-Ping,E-mail:spyang@njau.edu.cn,Tel:025-84396463;GAI Jun-Yi,E-mail:sri@njau.edu.cn, Tel: 025-84395405
  • About author:hanlitao0210@yahoo.com.cn

摘要:

采用cDNA-AFLP差异显示技术对大豆细胞质雄性不育系NJCMS2A与其保持系NJCMS2B间基因差异表达进行研究,结果从NJCMS2A花蕾中分离到一个差异表达片段,对该差异片段进行克隆、测序和序列比对分析,Blast检索结果显示它与大豆基因组中Gm13g29510.1cDNA片段的同源性达98.7%,与大豆中一个MADS-box基因的同源性达98%,氨基酸序列比对结果表明它与大豆中一个MADS-box蛋白有96%的同源性,与豌豆中MADS-box M7蛋白有83%的同源性,与苦瓜中MADS-box2蛋白有88%的同源性,与海岛棉典型的MADS-box基因编码的AGAMOUS蛋白保守区有83%的同源性,进一步对其氨基酸序列进行结构和功能预测显示该差异片段具有MADS-box转录因子的典型结构域K-box,证明其编码蛋白为一MADS-box转录因子,半定量RT-PCR分析结果显示其在NJCMS2A花蕾中表达量很高,而在NJCMS2B花蕾中表达量很低,推测该差异片段可能与大豆细胞质雄性不育有关。

关键词: 大豆, 细胞质雄性不育, cDNA-AFLP, MADS-box转录因子

Abstract:

CMS (cytoplasmic male sterility) plays an important role in the utilization of crop heterosis. It is of important significance on theory and practice to study the genetic base and mechanism of CMS. To reveal the molecular mechanism of soybean cytoplasmic male sterility, we analyzed the gene differential expression between the soybean cytoplasmic male sterile line NJCMS2A and its maintainer line NJCMS2B by the cDNA-AFLP differential display method. A differentially expressed fragment from the flower buds of NJCMS2A was cloned and sequenced. The Blast results showed that the differentially expressed fragment shared 98.7% homology with g29510.1 cDNA fragment on Gm13 of soybean genome, and 98% homology with a MADS-boxgene of soybean. The Blast results of the amino acid sequences indicated that the differentially expressed fragment shared 96% homology with a MADS-box protein of Glycine max, 83% homology with the MADS-box M7 protein of Pisum sativum, 88% homology with the MADS-box 2 protein of Momordica charantia, and 83% homology with AGAMOUS protein of Gossypium barbadense. The structure and function prediction of the amino acid sequence showed that the protein encoded by the differentially expressed fragment was the transcription factor of the MADS-box gene which contained a typical K-box domain. The results of semi-quantitative RT-PCR showed that the expression quantity of the differentially expressed fragment in the flower buds of NJCMS2A was much higher than that of NJCMS2B. According to the above results, it was inferred that the differentially expressed fragment was probably related to the soybean cytoplasmic male sterility.

Key words: Soybean, Cytoplasmic male sterility, cDNA-AFLP, MADS-box transcription factor

[1] Bachem C W B, Van Der Hoeven R S, De Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G F. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J, 1996, 9: 745-753

[2] Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem Biophys Res Commun,1997, 234: 516-521

[3] Van Der Biezen E A, Juwana H, Parker J E, Jones J D G. cDNA-AFLP display for the isolation of Peronospora parasitica genes expressed during infection in Arabidopsis thaliana. Mol Plant-Microbe Interac, 2000, 13: 895-898


 

[4] Qin L, Overmars H, Helder J, Popeijus H, Van Der Voort J R, Groenink W, Van Koert P, Schots A, Bakker J, Smant G. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Mol Plant-Microbe Interac,2000, 13: 830-836

[5] Ling X-Y凌杏元), Zhou P-J周培疆), Huang Q-Y黄青阳), Guan H-X关和新), Zhu Y-G朱英国). Isolation and sequence analysis of a mitochondrial DNA fragment associated with CMS in Hong Lian type rice. Acta Biol Exp Sin (实验生物学报), 2000, 33(2): 151-155 (in Chinese with English abstract)(((((

[6] Wu M-S(吴敏生), Gao Z-H(高志环), Dai J-R(戴景瑞). Studies on differential gene expression of maize (Zea mays L.) by means of cDNA- AFLP technique. Acta Agron Sin (作物学报), 2001, 27(3): 339-342 (in Chinese with English abstract)

[7] Wang Y-Q(王永勤), Cao J-S(曹家树), Fu Q-G(符庆功), Yu X-L(余小林), Ye W-Z(叶纨芝), Xiang X(向珣). Differential expression analysis of genic male sterility A/B lines by cDNA-AFLP in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino). Sci Agric Sin (中国农业科学), 2003, 36(5): 557-560 (in Chinese with English abstract)

[8] Lü S-H(吕山花), Meng Z(孟征). Gene duplication and functional diversification in the MADS-box gene family. Chin Bull Bot (植物学通报), 2007, 24(1): 60-70 (in Chinese with English abstract)

[9] Parenicova L, De Folter S, Kieffer M, Horner D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B, Angenent G C, Colombo L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell, 2003, 15: 1538-1551

[10] Nam J, Kim J, Lee S, An G, Ma H, Nei M. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Nat Acad Sci USA, 2004, 101: 1910-1915

[11] Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 2003, 33: 867-874

[12] Battaglia R, Brambilla V, Colombo L, Stuitje A R, Kater M M. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev, 2006, 123: 267-276

[13] Wang X-L(汪潇琳), Chen Y-P(陈艳萍), Yu D-Y(喻德跃). Expression of the MADS-box gene GmAGL15 in seed development of soybean. Acta Agron Sin (作物学报), 2008, 34(2): 330-332 (in Chinese with English abstract)

[14] Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. Plant J, 2000, 24: 457-466

[15] Bai Y N, Gai J Y. Development of a new cytoplasmic-nuclear male-sterility line of soybean and inheritance of its male-fertility restorability. Plant Breed, 2006, 125: 85-88

[16] Bachem C W B, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Mol Biol Rep, 1998, 16: 157-173

[17] Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353: 31-37

[18] Ferrario S, Immink R G H, Shchennikova A, Busscher-Lange J, Angenent G C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003, 15: 914-925

[19] TheiBen G, Saedler H. Floral quartets. Nature, 2001, 409: 469-471

[20] Hu R-B(胡瑞波), Fan C-M(范成明), Li H-Y(李宏宇), Lin C-T(林辰涛), Fu Y-F(傅永福). Analysis of MIKC-type MADS-box genes in soybean (Glycine max). Mol Plant Breed (分子植物育种), 2009, 7(3): 429-436 (in Chinese with English abstract)

[21] Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development in Arabidopsis. Plant Cell,1989, 1: 37-52

[22] Murai K, Takumi S, Koga H, Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear- cytoplasm interaction in wheat. Plant J, 2002, 29: 169-181

[23] Meguro A, Takumi S, Ogihara Y, Murai K. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod, 2003, 15: 221-230

[24] Hama E, Takumi S, Ogihara Y, Murai K. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta, 2004, 218: 712-720

[25] Sun Q-P(孙清萍), Wang L(汪莉), Yi P(易平), Zhu Y-G(朱英国). Expression analysis of MADS-box gene family on uni-nucleate and bi-nucleate stage anthers on HL-CMS system. Wuhan Bot Res (武汉植物学研究), 2002, 20(5): 325-328 (in Chinese with English abstract)

[26] Yuan Z-Q(袁自强), Qian X-Y(钱晓茵), Liu J(刘军), Liu J-D(刘建东), Qian M(钱旻), Yang J-S(杨金水). cDNA cloning and analysis of two MADS-box genes in rice. Prog Nat Sci (自然科学进展), 2000, 10(2): 129-134 (in Chinese)

[27] Zhou L-L(周琳璘), Song G-Q(宋国琦), Li H-Y(李红燕), Hu Y-G(胡银岗), He B-R(何蓓如). A MADS-box transcription factor related to fertility conversion in male sterile wheat lines. Acta Agron Sin (作物学报), 2008, 34(4): 598-604 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!