作物学报 ›› 2010, Vol. 36 ›› Issue (06): 905-910.doi: 10.3724/SP.J.1006.2010.00905
韩利涛,姜伟,杨守萍*,喻德跃,盖钧镒*
HAN Li-Chao, JIANG Wei, YANG Shou-Ping, YU De-Ti, GAI Jun-Yi
摘要:
采用cDNA-AFLP差异显示技术对大豆细胞质雄性不育系NJCMS2A与其保持系NJCMS2B间基因差异表达进行研究,结果从NJCMS2A花蕾中分离到一个差异表达片段,对该差异片段进行克隆、测序和序列比对分析,Blast检索结果显示它与大豆基因组中Gm13上g29510.1cDNA片段的同源性达98.7%,与大豆中一个MADS-box基因的同源性达98%,氨基酸序列比对结果表明它与大豆中一个MADS-box蛋白有96%的同源性,与豌豆中MADS-box M7蛋白有83%的同源性,与苦瓜中MADS-box2蛋白有88%的同源性,与海岛棉典型的MADS-box基因编码的AGAMOUS蛋白保守区有83%的同源性,进一步对其氨基酸序列进行结构和功能预测显示该差异片段具有MADS-box转录因子的典型结构域K-box,证明其编码蛋白为一MADS-box转录因子,半定量RT-PCR分析结果显示其在NJCMS2A花蕾中表达量很高,而在NJCMS2B花蕾中表达量很低,推测该差异片段可能与大豆细胞质雄性不育有关。
[1] Bachem C W B, Van Der Hoeven R S, De Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G F. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J, 1996, 9: 745-753[2] Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem Biophys Res Commun,1997, 234: 516-521[3] Van Der Biezen E A, Juwana H, Parker J E, Jones J D G. cDNA-AFLP display for the isolation of Peronospora parasitica genes expressed during infection in Arabidopsis thaliana. Mol Plant-Microbe Interac, 2000, 13: 895-898 [4] Qin L, Overmars H, Helder J, Popeijus H, Van Der Voort J R, Groenink W, Van Koert P, Schots A, Bakker J, Smant G. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Mol Plant-Microbe Interac,2000, 13: 830-836[5] Ling X-Y凌杏元), Zhou P-J周培疆), Huang Q-Y黄青阳), Guan H-X关和新), Zhu Y-G朱英国). Isolation and sequence analysis of a mitochondrial DNA fragment associated with CMS in Hong Lian type rice. Acta Biol Exp Sin (实验生物学报), 2000, 33(2): 151-155 (in Chinese with English abstract)((((([6] Wu M-S(吴敏生), Gao Z-H(高志环), Dai J-R(戴景瑞). Studies on differential gene expression of maize (Zea mays L.) by means of cDNA- AFLP technique. Acta Agron Sin (作物学报), 2001, 27(3): 339-342 (in Chinese with English abstract)[7] Wang Y-Q(王永勤), Cao J-S(曹家树), Fu Q-G(符庆功), Yu X-L(余小林), Ye W-Z(叶纨芝), Xiang X(向珣). Differential expression analysis of genic male sterility A/B lines by cDNA-AFLP in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino). Sci Agric Sin (中国农业科学), 2003, 36(5): 557-560 (in Chinese with English abstract)[8] Lü S-H(吕山花), Meng Z(孟征). Gene duplication and functional diversification in the MADS-box gene family. Chin Bull Bot (植物学通报), 2007, 24(1): 60-70 (in Chinese with English abstract)[9] Parenicova L, De Folter S, Kieffer M, Horner D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B, Angenent G C, Colombo L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell, 2003, 15: 1538-1551[10] Nam J, Kim J, Lee S, An G, Ma H, Nei M. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Nat Acad Sci USA, 2004, 101: 1910-1915[11] Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 2003, 33: 867-874[12] Battaglia R, Brambilla V, Colombo L, Stuitje A R, Kater M M. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev, 2006, 123: 267-276[13] Wang X-L(汪潇琳), Chen Y-P(陈艳萍), Yu D-Y(喻德跃). Expression of the MADS-box gene GmAGL15 in seed development of soybean. Acta Agron Sin (作物学报), 2008, 34(2): 330-332 (in Chinese with English abstract)[14] Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. Plant J, 2000, 24: 457-466[15] Bai Y N, Gai J Y. Development of a new cytoplasmic-nuclear male-sterility line of soybean and inheritance of its male-fertility restorability. Plant Breed, 2006, 125: 85-88[16] Bachem C W B, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Mol Biol Rep, 1998, 16: 157-173[17] Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353: 31-37[18] Ferrario S, Immink R G H, Shchennikova A, Busscher-Lange J, Angenent G C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003, 15: 914-925[19] TheiBen G, Saedler H. Floral quartets. Nature, 2001, 409: 469-471[20] Hu R-B(胡瑞波), Fan C-M(范成明), Li H-Y(李宏宇), Lin C-T(林辰涛), Fu Y-F(傅永福). Analysis of MIKC-type MADS-box genes in soybean (Glycine max). Mol Plant Breed (分子植物育种), 2009, 7(3): 429-436 (in Chinese with English abstract)[21] Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development in Arabidopsis. Plant Cell,1989, 1: 37-52[22] Murai K, Takumi S, Koga H, Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear- cytoplasm interaction in wheat. Plant J, 2002, 29: 169-181[23] Meguro A, Takumi S, Ogihara Y, Murai K. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod, 2003, 15: 221-230[24] Hama E, Takumi S, Ogihara Y, Murai K. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta, 2004, 218: 712-720[25] Sun Q-P(孙清萍), Wang L(汪莉), Yi P(易平), Zhu Y-G(朱英国). Expression analysis of MADS-box gene family on uni-nucleate and bi-nucleate stage anthers on HL-CMS system. Wuhan Bot Res (武汉植物学研究), 2002, 20(5): 325-328 (in Chinese with English abstract)[26] Yuan Z-Q(袁自强), Qian X-Y(钱晓茵), Liu J(刘军), Liu J-D(刘建东), Qian M(钱旻), Yang J-S(杨金水). cDNA cloning and analysis of two MADS-box genes in rice. Prog Nat Sci (自然科学进展), 2000, 10(2): 129-134 (in Chinese)[27] Zhou L-L(周琳璘), Song G-Q(宋国琦), Li H-Y(李红燕), Hu Y-G(胡银岗), He B-R(何蓓如). A MADS-box transcription factor related to fertility conversion in male sterile wheat lines. Acta Agron Sin (作物学报), 2008, 34(4): 598-604 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|