欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 1003-1010.doi: 10.3724/SP.J.1006.2010.01003

• 耕作栽培·生理生化 • 上一篇    下一篇

普通小麦光合碳同化与产量性状杂种优势的关系

王秀莉1,2,胡兆荣1,2,彭惠茹1,2,杜金昆1,2,孙其信1,2,王敏1,2,倪中福1,2,*   

  1. 1中国农业大学杂种优势研究与利用教育部重点实验室/农业生物技术国家重点实验室/作物基因组与遗传改良农业部重点实验室/作物遗传改良北京市重点实验室北京100193;2国家植物基因研究中心,北京100193
  • 收稿日期:2009-12-27 修回日期:2010-03-15 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 倪中福, E-mail: wheat3392@cau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2007CB109000),国家杰出青年科学基金项目(30925023)和国家自然科学基金项目(30671297,30771342)资助.

Relationship of Photosynthetic Carbon Assimilation Related Traits of Flag Leaves with Yield Heterosis in a Wheat Diallel Cross

WANG Xiu-Li1,2,HU Zhao-Rong1,2,PANG Hui-Ru1,2,DU Jin-Kun1,2,SUN Qi-Xin1,2,WANG Min1,2,NI Zhong-Fu1,2,*   

  1. 1Key Laboratory of Crop Heterosis and Utilization,Ministry of Education/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Genomics and Genetic Improvement,Ministry of Agriculture/Beijing Key Laboratory of  Crop Genetic Improvement,China Agricultural University,Beijing 100193,China;2National Plant Gene Research Centre(Beijing),Beijing 100193,China
  • Received:2009-12-27 Revised:2010-03-15 Published:2010-06-12 Published online:2010-04-14
  • Contact: NI Zhong-Fu,E-mail:wheat3392@cau.edu.cn

摘要:

以按照NCII遗传交配设计配制的20个普通小麦杂交种及其亲本为材料,系统测定灌浆初期、中期和后期旗叶的6个光合碳同化相关性状,包括光合速率、气孔导度、胞间CO2浓度、蒸腾速率、水分利用效率和原初光能转化效率,并与产量性状杂种优势进行相关分析。结果显示,杂种优势值因组合、性状和发育时期不同而差异很大。偏相关分析表明,光合碳同化性状与穗长和有效穗数杂种优势之间没有相关性,但与其他产量性状杂种优势之间存在显著的相关关系,特别是在作物籽粒产量形成最为关键的灌浆中期,光合速率、胞间CO2浓度、水分利用效率和原初光能转化效率与穗粒数、千粒重、单株产量和主茎穗产量等性状的杂种优势呈显著或极显著正相关,说明较高的光合能力及水分利用效率可能是小麦产量杂种优势形成的重要生理基础之一。

关键词: 小麦, 光合碳同化, 产量, 杂种优势

Abstract:

In spite of commercial use of heterosis in agriculture, the physiological basis of heterosis is poorly understood. Photosynthetic carbon assimilation related traits of flag leaves, including photosynthetic capacity, stomatal conductance, intercellular CO2 concentration, transpiration rate, water use efficiency and efficiency of primary conversion of light energy, were measured at early, middle, and post grain-filling stages in a wheat (Triticum aestivum L.) diallel cross involving 20 hybrids and nine parents, with the purpose of determining the relationship of yield heterosis with these traits. The magnitude of heterosis varied subject to cross combination, trait, and developmental stage. Further analysis indicated that heterosis of photosynthetic carbon assimilation related traits was not correlated with that of spike length and effective spike per plant, but significantly correlated with that of other yield components. Moreover, at middle grain-filling stage, the heterosis of photosynthetic rate, intercellular CO2 concentration, water use efficiency and efficiency of primary conversion of light energy were significantly and positively correlated with those of fertile spikes per plant, thousand grain weight, yield per plant and yield of main stem, suggesting that higher photosynthetic capacity and water use efficiency could be one of the important physiological basis of wheat hybrid vigor.

Key words: Wheat, Photosynthetic carbon assimilation, Yield, Heterosis

[1] Hochholdinger F, Hoeckera N. Towards the molecular basis of heterosis. Trend Plant Sci, 2007, 12: 427-432

[2] Ni Z-F(倪中福), Sun Q-X(孙其信), Wu L-M(吴利民). Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves of early and vigorous tillering stages. J China Agric Univ (中国农业大学学报), 2000, 5(1): 1-8 (in Chinese with English abstract)

[3] Bao J Y, Lee S Y, Chen C, Zhang X Q, Zhang Y, Liu S Q, Clark T, Wang J, Cao M L, Yang H M, Wang S M, Yu J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol, 2005, 138: 1216-1231

[4] Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho H P, Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179: 1275-1283

[5] Ge X M, Chen W H, Song S H, Wang W W, Hu S N, Yu J. Transcriptomic profiling of mature embryo from an elite super-hybrid rice LYP9 and its parental lines. BMC Plant Biol, 2008, 8: 114

[6] Ni Z, Sun Q, Wu L, Xie C. Differential gene expression between wheat hybrids and their parental inbreds in primary roots. Acta Bot Sin, 2002, 44: 457-462

[7] Song S H, Qu H Z, Chen C, Hu S N, Yu J. Differential gene expression in an elite hybrid rice cultivar (Oryza sativa L.) and its parental lines based on SAGE data. BMC Plant Biol, 2007, 7: 49

[8] Huang Y, Zhang L D, Zhang J W, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol, 2006, 62: 579-591

[9] Wu H L, Ni Z F, Yao Y Y, Guo G G, Sun Q X. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivum L.). Prog Nat Sci, 2008, 18: 697-706

[10] Zhang Y H, Ni Z F, Yao Y Y, Zhao J, Sun Q X. Analysis of genome-wide gene expression in root of wheat hybrid and its parents using Barley1 GeneChip. Prog Nat Sci, 2006, 16: 712-720

[11] Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet, 1990, 80: 769-775

[12] Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H P, Nordheim A, Hochholdinger F. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics, 2008, 8: 3882-3894

[13] Wang W W, Meng B, Ge X M, Song S S, Yang Y, Yu X M, Wang L G, Hu S N, Liu S Q, Yu J. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics, 2008, 8: 4808-4821

[14] Song X, Ni Z F, Yao Y Y, Xie C J, Li Z X, Wu H Y, Zhang Y H, Sun Q X. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 2007, 7: 3538-3557

[15] Song X, Ni Z F, Yao Y Y, Zhang Y H, Sun Q X. Identification of differentially expressed proteins between hybrid and parents in wheat (Triticum aestivum L.) seedling leaves. Theor Appl Genet, 2009, 118: 213-225

[16] Yang T-X(杨太兴), Zeng M-Q(曾孟潜), Li J-G(李继耕). Corn heterosis and isozyme studies: IV. Analysis of the hybrid enzyme on the peroxidase isoenzyme. Heredity (遗传), 1981, 3(6): 31-33 (in Chinese with English abstract)

[17] Dai J-R(戴景瑞), Luo M-Z(罗美中), Han Y-S(韩雅姗). Relationship of maize peroxidase, esterase isozyme and hybrid production. Acta Agron Sin (作物学报), 1989, 15(3): 193-201 (in Chinese with English abstract)

[18] Li Z Q, Wang Z R. Relationship between heterosis and endogenous plant hormones in liriodendron. Acta Bot Sin, 2002, 44(6): 698-701

[19] Zhao Q-Z(赵全志), Lü D-B(吕德彬), Cheng X-Y(程西永), Chen J-Y(陈军营), Liang J-J(梁静静). The heterosis of canopy photosynthetic rate and bleeding intensity of hybrid wheat. Sci Agric Sin (中国农业科学), 2002, 35(8): 925-928 (in Chinese with English abstract)

[20] Mohammad A, Sarker Z, Murayama S, Ishimine Y, Tsuzuki E. Physio-Morphological characters of F1 hybrid of rice (Oryza sativa L.) in japanica-india crosses. Plant Proc Sci, 2001, 4: 196-201

[21] You M-A(游明安), Gai J-Y(盖钧镒), Ma Y-H(马育华). Relationship of leaf photosynthetic rate with stomatal and mesophyll conductance in soybeans. Acta Agron Sin (作物学报), 1995, 21(2): 145-149 (in Chinese with English abstract)

[22] Wang Q(王强), Zhang Q-D(张其德), Jiang G-M(蒋高明), Lu C-M(卢从明), Kuang T-Y(匡廷云), Wu S(吴爽), Li C-Q(李成荃), Jiao D-M(焦德茂). Photosynthetic characteristics of two super high-yield hybrid rice. Acta Bot Sin (植物学报), 2000, 42(12): 1285-1288 (in Chinese with English abstract)

[23] Dong D-K(董德坤), Shi K(师恺), Cao J-S(曹家树). The photosynthetic heterosis and its mechanisms of an inter-subspecific hybrid between Brassica campestris ssp. chinensis and B. campestris ssp. rapifera. Sci Agric Sin (中国农业科学), 2007, 40(12): 2804-2810 (in Chinese with English abstract)

[24] Tollenaar M, Ahmadzadeh A, Lee E A. Physiological basis of heterosis for grain yield in maize. Crop Sci, 2004, 44: 2086-2094

[25] Wei G, Tao Y, Liu G Z, Chen C, Luo R, Xia H A, Gan Q, Zeng H P, Lu Z L, Han Y N, Li X B, Song G S, Zhai H L, Peng Y G, Li D Y, Xu H L., Wei X L., Cao M L, Deng H F, Xin Y Y, Fu X Q, Yuan L P, Yu J, Zhu Z, Zhu L H. A transcriptomic analysis of super hybrid rice LYP9 and its parents. Proc Natl Acad Sci USA, 2009, 106: 7695-7701

[26] Ni Z F, Kim E D, Ha M, Lackey E, Liu J X, Zhang Y R, Sun Q X, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327-331

[27] Xiao K(肖凯), Gu J-T(谷俊涛), Zou D-H(邹定辉), Zhang R-X(张荣铣). Studies on CO2 conductance during flag Leaf aging of hybrid wheats and their parents. Acta Agron Sin (作物学报), 1998, 24(4): 503-508 (in Chinese with English abstract)

[28] Zhang Q-D(张其德), Zhu X-G(朱新广), Wang Q(王强作物学报), 2001, 27(5): 653-657 (in Chinese with English abstract)), Lu C-M(卢从明), Kuang T-Y(匡廷云), Zhang W-X(张文祥), Zhang J-H(张建华). Photosynthetic characters of F1 hybrids in winter wheat and their parents. Acta Agron Sin (

[29] Tang W(唐薇), Li W-J(李维江), Zhang D-M(张冬梅), Dong H-Z(董合忠). Drought effects on POD, MDA and photosynthetic rate in seedling leaves of transgenic cotton . China Cotton (中国棉花), 2002, 29(2): 23-24(in Chinese)

[30] Zhang Y-P(张永平), Wang Z-M(王志敏), Wang P(王璞), Zhao M(赵明). Canopy photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Sci Agric Sin (中国农业科学), 2003, 36(10): 1143-1149 (in Chinese with English abstract)

[31] Lupton F G H. Physiological bases of heterosis in wheat. In: Janossy A, Lupton F G H, eds. Heterosis in Plant Breeding. New York: Academic Press, 1974. pp 71-80

Borghi B, Perenzin M, Nash R J. Agronomic and qualitative characteristics of ten bread wheat hybrids produced using a chemical hybridizing agent. Euphytica, 1988, 39:185-194
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!