欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1414-1424.doi: 10.3724/SP.J.1006.2010.01414

• 研究简报 • 上一篇    

红麻GMS与CMS小孢子败育过程的细胞学及组织化学比较

周琼,黎桦,赵嘉,周瑞阳*   

  1. 广西大学农学院,广西南宁 530005
  • 收稿日期:2010-01-08 修回日期:2010-04-21 出版日期:2010-08-12 网络出版日期:2010-06-11
  • 通讯作者: 周瑞阳, E-mail: ry_ zhou@ tom.com
  • 基金资助:

    本研究由国家自然科学基金项目(30471106)资助。

Cytological and Cytochemical Observation on Microspore Abortion of GMS and CMS in Kenaf (Hibiscus cannabinus L.)

ZHOU Qiong,LI Hua,ZHAO Jia,ZHOU Rui-Yang*   

  1. Collage of Agronomy, Guangxi University, Nanning 530005, China
  • Received:2010-01-08 Revised:2010-04-21 Published:2010-08-12 Published online:2010-06-11
  • Contact: ZHOU Rui-Yang, E-mail: ry_ zhou@ tom.com

摘要:

以红麻细胞质雄性不育系(GMS)L23A、保持系L23B及从该保持系中发现的细胞核雄性不育系(CMS)L23BS为材料,采用石蜡显微制片技术,在光学显微镜下比较观察了三者花药发育过程中小孢子的发育过程及组织化学变化。结果表明,L23A的花药发育过程中,小孢子发育的不同阶段均出现败育现象,最早的败育表现为花粉母细胞在减数分裂之前的退化解体,最终形成空的花粉囊; 有的因花粉母细胞减数分裂过程异常而导致不能形成小孢子四分体; 有的因小孢子在四分体中不能正常释放而败育,同时绒毡层细胞过度液泡化,并提早解体死亡; 花药发育早期含有少量蛋白质和淀粉,随着花药的发育逐渐变少。而L23BS小孢子败育的时期集中于四分体至单核花粉期间,表现为小孢子发育异常,有些小孢子不能从四分体里释放出来而影响其正常发育。在四分体以前与可育系类似,花药含丰富的蛋白质和淀粉。在败育的过程中,花药中的蛋白质和淀粉含量渐渐减少,但药隔组织中的在颗粒淀粉含量几乎不变。

关键词: 红麻, 细胞核雄性不育, 小孢子发生, 细胞形态学, 组织化学

Abstract:

Kenaf (Hibiscus cannabinus L.) is a potential alternative crop developed for fiber production, but the utilization of hybrids of the sterile line combination in production was seldom reported. Nuclear male sterile lines were discovered from the maintainer line L23B by Dr. Zhou Ruiyang in 2005, and six cytoplasmic male sterile (CMS) lines including cytoplasmic male sterile (CMS) line L23A were identified in 2007. For exploring the mechanism of male sterility, it is necessary to study the changes of some metabolic materials in the developing anther. Microsporogenesis of cytoplasmic male sterile (CMS) line L23A, together with its maintainer line L23B and genic male sterile (GMS) line L23BS which is a mutant of L23B, was studied by microscopic observation with cytological and cytochemical methods. The results indicated that microspore deformation of cytoplasmic male sterile (CMS) lines L23A occurred at different stages. Some anthers contained degenerated pollen mother cells (PMCs) which might result in empty pollen sac; some PMCs failed to pass meiosis; some microspores could not be released from tetrad successfully; andtapetal cells vacuolated. Cytochemical studies indicated there were a little protein and a few starch grains in the young anthers. During the growth of anther, no protein and less starch were observed. In genic male sterile (GMS) line L23BS, some microspores were unable to escape from tetrad and aborted mainly between tetrad and mononuclear pollen stages. Before then protein and starch deposited as normal which disappeared gradually after tetrad stage. It should be noted that the protein and starch disappeared gradually, but the content of big starch grains in L23BS connective did not changed during its microsporogenesis.

Key words: Kenaf(Hibiscus cannabinus L.), Genic male sterile, Microsporogenesis, Cytomorphology, Cytochemistry

[1]Bowyer J L. Economic and environmental comparisons of kenaf growth versus plantation grown softwood and hardwood for pulp and paper. In: Seller Jr T, Reichert N A, Columbus E P, Fuller M J, Williams K, eds. Kenaf Properties, Processing and Products Mississippi State University, Mississipi State, MS, 1999. pp 323-346

[2]Origele A, Sano Y. Fractionation and utilization of kenaf (Hibiscus cannabinus) components for conversion of biomass. Mokuzai Gakkaish, 1997, 43: 171-177

[3]Ugale S D, Khuspe S S. Use of male sterility in cross fertilization studies in Hibiscus cannabinus L. J Maharashtra Agric Univ, 1977, (2): 113-115

[4]Seca A M L, Cvaleiro J A S, Domingues F M J, Silvestre A J D, Evtuguin D, Neto C P. Structural characterization of the bark and core lignins from kenaf (Hibiscus cannabinus)

[J]. J Agric Food Chem Ralph J. An unusual lignin from kenaf [J].J Nat Prod

[6]Nishimura N, Izumi A, Kuroda K. Structural characterization of kenaf lignin: differences among kenaf varieties [J].Ind Crop Prod

[7]Kuroda K, Nakagawa-Izumi A, Mazumder B B, Ohtani Y, Sameshima K. Evaluation of chemical composition of the core and bast lignins of variety Chinpi-3 kenaf (Hibiscus cannabinus L.) by pyrolysis-gas chromatography/mass spectrometry and cupric oxide oxidation. Ind Crop Prod, 2005, 22: 223-232

[8]Petrini C, Bazzocchi R, Montalti P. Yield potential and adaptation of kenaf (Hibiscus cannabinus) in north-central Italy [J].Ind Crop Prod

[9]Mambelli S, Grandi S. Yield and quality of kenaf (Hibiscus cannabinus L.) stem as affected by harvest date and irrigation. Ind Crop Prod, 1995, 4: 97-104

[10]Gray L N, Collavino N G, Simon G E, Mariotti J A. Diallelic analysis of genetic effects determining days to flowering in kenaf [J].Ind Crop Prod

[11]Meints P D, Smith C A. Kenaf seed storage duration on germination, emergence, and yield [J].Ind Crop Prod

[12]Zhu L-M(朱丽梅), Ai S-Y(艾素云), Zhou R-Y(周瑞阳). A cytologica study on microsporogenesis of cytoplasmic male sterile lines in kenaf (Hibiscus cannabinus L.). Acta Agron Sin (作物学报), 2007, 33(6): 999-1003 (in Chinese with English abstract)

[13]Huang F(黄飞), Wang D-J(王道杰), Li B(黎斌), Guo A-G(郭蔼光), Li D-R(李殿荣), Tian J-H(田建华). Microsporogenesis comparison of genetic male sterility line and its allele fertile line in Brassica napus L. Acta Bot Boreal-Occident Sin (西北植物学报), 2006, 26(6): 1159-1164 (in Chinese with English abstract)

[14]Rogers R B, Smith M A L, Cowen R K D. In vitro production of male sterile Zinnia elegans. Euphytica, 1992, 61: 217-223

[15]Sari G M, Ferrario S, Villa M, Pe M E. gaMS-1: a gametophytic male sterile mutant in maize [J].Sex Plant Rep

[16]Quiros C F, Rugama A, Dong Y Y, Orton T J. Cytological and genetical studies of a male sterile celery [J]. Euphytica

[17]Conicella C, Genualdo G, Lucia R, Ramulu K S, Cardi T. Early tapetal degeneration and meiotic defects are involved in the male sterility of Solanum commersonii (+) S. tuberosum somatic hybrids. Theor Appl Genet, 1997, 95: 609-617

[18]Ye Y M, Hu Q S, Chen T H, Bao M Z. Male sterile lines of zinnia elegans and their cytological observations. Agric Sci China, 2008, 7: 423-431

[19]Fu X P, Hu J Y, Hu H R, Bao M Z. Cytological observation of microsporogenesis in male-sterile lines of Chinese pink (Dianthus chinensis L.). Agric Sci China, 2008, 7: 547-553

[20]Wang F-Q(王福青), Cheng X-F(程显峰), Meng X-X(孟祥霞), Dong S-L(董树连). Zhao Y-H(赵永厚). The cellular morplology anatomical observation of cabbage male-sterile line. J Huazhong Agric Univ (华中农业大学学报), 2000, 8(19): 391-394 (in Chinese with English abstract)

[21]Laser K D, Lersten N R. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms [J].Bot Rew

[22]Bhandari N N. The microsporangium. In: Johri B M ed. Em- bryology of Angiosperms. New York, US: Springer, 1984. pp 53-121

[23]You R-L(尤瑞麟). Textbook of Botany Experiment (植物学实验技术教程). Beijing: Peking University Press, 2008. pp 72-78

[24]Scoles G J, Evans L E. Pollen development in male fertile and cytoplasmic male sterile rye [J].Can J Bot

[25]Xie C-T(谢潮添), Yang Y-H(杨延红), Zhu X-Y(朱学艺), Tian H-Q(田惠桥). The cytochemical observation of anthers of Chinese cabbage’s male-sterile. Acta Biol Exp Sin (实验生物学报), 2004, 37(8): 295-302 (in Chinese with English abstract)

[26]Panchaksharappa M G, Rudramuniyappa C K. Localization of nucleic acid and insoluble polysaccharides in the anther of Zea mays L.: a histochemical study. Cytologia, 1974, 39: 153-160

[27]Katti R Y, Giddanavar H S, Naik S, Agadi S N, Hegde R R. Persistence of callose and tapetum in the microsporogenesis of genic male sterile Cajanus cajan (L.) Millsp. with well formed endothecium. Cytologia, 1994, 59: 65-72

[28]Dong Q-H(董庆华), Li R-Q(利容千), Wang J-B(王建波). Histochemical studies on anther development in male sterile radish (Raphanus sativus L.). J Wuhan Bot Res (武汉植物学研究), 1997, 15(1): 10-14 (in Chinese with English abstract)

[29]Zhu L-M(朱丽梅). Observation on Morphology and anatomy of Microspore Abortion of Cytoplasmic Male Sterile Line in Kenaf (Hibiscus cannabinus L.). MS Dissertation of Guangxi University, 2007. pp 32-35 (in Chinese with English abstract)

[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053.
[3] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[4] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[5] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[6] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[7] 秦丽霞, 李静, 张换样, 李盛, 竹梦婕, 焦改丽, 吴慎杰. 棉花半乳糖基转移酶基因GhGalT1启动子的克隆及表达分析[J]. 作物学报, 2018, 44(02): 218-226.
[8] 万雪贝,李东旭,徐益,徐建堂,张力岚,张列梅,林荔辉,祁建民,张立武. 红麻EST-SSR标记的开发及其多态性评价[J]. 作物学报, 2017, 43(08): 1170-1180.
[9] 扆珩,李昂,刘惠民,景蕊莲. 小麦蛋白磷酸酶2A 基因TaPP2AbB″-α 启动子的克隆及表达分析[J]. 作物学报, 2016, 42(09): 1282-1290.
[10] 张立武,黄枝秒,万雪贝,林荔辉,徐建堂,陶爱芬,方平平,祁建民. 红麻光周期钝感材料的鉴定与遗传分析[J]. 作物学报, 2014, 40(12): 2098-2103.
[11] 汪斌, 祁伟, 兰涛, 陈惠端, 徐建堂, 粟建光, 李爱青, 祁建民. 应用ISSR分子标记绘制红麻种质资源DNA指纹图谱[J]. 作物学报, 2011, 37(06): 1116-1123.
[12] 陈美霞, 祁建民, 危成林, 谢增荣, 林培清, 兰涛, 陶爱芬, 陈涛. 红麻五个质量性状在遗传连锁图谱中的初步定位[J]. 作物学报, 2011, 37(01): 165-169.
[13] 张建奎;董静;宗学凤;余国东;戴秀梅;阮仁武. 温光敏核不育小麦C412S的育性转换及其APRT基因的表达[J]. 作物学报, 2009, 35(4): 662-671.
[14] 杨晓丽;张海洋;郭旺珍;郑永战;苗红梅;魏利斌;张天真. 芝麻核雄性不育系ms86-1小孢子败育过程的超微结构[J]. 作物学报, 2008, 34(11): 1894-1900.
[15] 朱丽梅;艾素云;周瑞阳. 红麻细胞质雄性不育系小孢子败育的细胞学观察[J]. 作物学报, 2007, 33(06): 999-1003.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!