作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1559-1567.doi: 10.3724/SP.J.1006.2010.01559
闫静静1,杨兰芳1,2,*,庞静1
YAN Jing-Jing1,YANG Lan-Fang1, 2,*,PANG Jing1
摘要: 设置大豆和棉花的盆栽试验,利用静态箱法采样和气相色谱技术测定作物生长期的土壤呼吸。结果表明,大豆与棉花生长下土壤呼吸速率变化与作物生长相一致,与生长时间呈极显著的二次曲线相关关系。裸土土壤呼吸速率的季节变化不明显,与时间的相关性弱。大豆土壤呼吸速率的峰值是棉花的2.4倍,出现时间也比棉花早。大豆土壤呼吸呈苗期<分枝期<成熟期<开花结荚期<鼓粒期,鼓粒期和开花结荚期的土壤呼吸占全生育期总量的82%,而生长时间只占全生育期的38.7%,大豆土壤呼吸总量是相应裸土的11.5倍。棉花土壤呼吸呈苗期<吐絮期<蕾期<花铃期,蕾期和花铃期土壤呼吸占全生育期的77.8%,生长时间只占全生育期的44.7%,棉花土壤呼吸总量是相应裸土的4.9倍。大豆全生育期的土壤呼吸总量和平均土壤呼吸速率分别是棉花的1.77倍和2.34倍。大豆和棉花生长时期根际呼吸对土壤呼吸的贡献分别为3.2%~95.8%和21.8%~88.0%,平均全生育期根际呼吸对土壤呼吸的贡献分别为91.3%和79.6%。大豆全生育期根际呼吸数量和平均根际呼吸速率分别是棉花的2.03倍和2.68倍。在种作物土壤中,土壤呼吸速率与气温呈显著的指数相关,而在裸土中,相关性不显著。氮肥对裸土的土壤呼吸无显著影响。总之,作物-土壤系统中,土壤呼吸受作物类型和生长时期控制,根际呼吸是土壤呼吸的主要部分,大豆由于共生固氮过程使得其土壤呼吸和根际呼吸的贡献显著高于棉花。
[1] Schlesinger W, Andrews J. Soil respiration and the global carbon cycle [J].Biogeochem [2] Raich J W, Potter C S. Global patterns of carbon dioxide emission from soils [J].Global Biogeochem Cycl [3] Rustad L, Huntington T G, Boone R D. Controls on soil respiration: Implication for climate change [J].Biogeochem [4] Raich J W, Potter C S, Bhagawati D. Inter-annual variability in global soil respiration, 1980-1994 [J].Global Change Biol [5] Domanski G, Kuzyakov Y, Siniakina S V, Stahr K. Carbon flows in the rhizosphere of ryegrass (Lolium perenne) [J].J Plant Nutr Soil Sci [6] Fu S L, Cheng W X, Susfalk R. Rhizosphere respiration varies with plant species and phenology: a greenhouse pot experiment. [J]. Plant Soil.2002,239:133- [7] Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlation and controls [J].Biogeochem [8] Jensen E S, Nielsen H H. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil, 2003, 282: 177-186 [9] Buyanovsky G A, Wager G H, Gantzer C J. Soil respiration in a winter wheat ecosystem [J].Soil Sci Soc Am J [10] Yang L F, Cai Z C. Soil respiration during a soybean-growing season [J].Pedosphere [11] Rochette P, Flanagan L B. Quantifying rhizosphere respiration in a corn crop under field conditions [J].Soil Sci Soc Am J [12] Lao J-C(劳家柽). Manual of Soil Agro-Chemistry Analysis (土壤农化分析手册). Beijing: Agriculture Press, 1988 (in Chinese) [13] Yang L-F(杨兰芳), Cai Z-C(蔡祖聪). Soil respiration during maize growth period affected by nitrogen application rates. Acta Pedolog Sin (土壤学报), 2005, 42(1): 9-15 (in Chinese with English abstract) [14] Kuzyakov Y. Review: Factors affecting rhizosphere priming effects [J].J Plant Nutr Soil Sci [15] Tang L-Z(唐罗忠). A review on methods of separating root contribution to soil respiration [J]. J Nanjing For Univ (Nat Sci Edn) (南京林业大学学报·自然科学版.2008, 32(2):97-102 [16] Chen C R, Condron L M, Xu Z H, Davis M R, Sherlock R R. Root, rhizosphere and root-free respiration in soils under grassland and forest plants [J].Eur J Soil Sci [17] Lee M, Nakane K, Nakatsubo T, Koizumi H. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperature deciduous forest [J].Plant Soil [18] Wang W, G J X, Feng J, Oikawa T. Contribution of root respiration to total soil respiration in a Leymus chinensis (Trin.) Tavel Grassland of Northeast China. J Integr Plant Biol, 2006, 48: 409-414 [19] Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition [J].Soil BiolBiochem [20] Kuzyakov Y, Cheng W. Photosynthesis controls of CO2 efflux from maize rhizosphere [J].Plant Soil [21] Illeris L, Michelsen A, Jonasson S. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert [J].Biogeochem [22] Craine J M, Wedin D A, Chaoin S F III. Predominance of ecophysiological controls on soil CO2 flux in the Minnesota grassland. Plant Soil, 1999, 207: 77-86 [23] Kuzyakov Y, Raskatov A, Kaupenjohann M. Turnover and distribution of root exudates of Zea mays [J].Plant Soil [24] Kuzyakov Y, Biryukova O V, Kuznetzova T V. Carbon partitioning in plant and soil, carbon dioxide fluxes and enzyme activities as affected by cutting ryegrass [J].Biol Fertil Soils [25] Högberg P, Nordgren A, Buchmann N, Taylor A F S, Ekblad A, Högberg M N, Nyberg G, Löfvenius M O, Read D J. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 2001, 411: 789-792 [26] Schaefer D A, Feng W, Zou X. Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China [J].Soil Biol & Biochem [27] Högberg P, Bhupinderpal-Singh, Löfvenius M O, Nordgren A. Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest [J].Forest Ecol Manag [28] Tang J, Baldocchi D D, Xu L. Tree photosynthesis modulates soil respiration on a diurnal time scale [J].Global Change Biol [29] Ekblad A, Högberg P. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiraiton [J].Oecologia [30] Tufekcioglu A, Raich J W, Isenhart T M, Schultz R C. Soil respiration within riparian buffers and adjacent crop fields [J].Plant Soil [31] Warembourg F R, Roumet C. Why and how to estimate the cost of symbiotic N2 fixation? A progressive approach based on the use of 14C and 15N isotopes [J].Plant Soil [32] Badrt D V, Vivanco J M. Regulation and function of root exudates [J].Plant Cell Environ [33] Marbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R. Release of carbon and nitrogen compounds by plant roots and threir possible ecological importance [J].J Plant Nutr Soil Sci [34] Schmidtke K. How to calculate nitrogen rhizodeposition: A case study in estimating N rhizodeposition in the pea (Posum sativum L.) and grasspea (Lathyrus sativus L.) using a continuous 15N labelling split-poot technique. Soil Biol Biochem, 2005, 37: 1893-1897 [35] Ta T C, Macdowall F D H, Faris M A. Excretion of nitrogen assimilated from N2 by nodulated roots of alfalfa (Medicago sativa) [J].Can J Bot [36] Hanson P J, Edwards N T, Garten C T, Andrews J A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochem, 2000, 48, 115-146 [37] Subke J A, Inglima I, Cotrufo M F. Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review [J].Global Change Biol [38] Sayer E J, Tanner E V J. A new approach to trenching experiments for measuring root-rhizosphere respiration in a lowland tropcal forest [J].Soil Biol Biochem |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[7] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[8] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[9] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[10] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[11] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[12] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[13] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[14] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[15] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
|