欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1450-1456.doi: 10.3724/SP.J.1006.2010.01450

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

冬小麦种质矮孟牛第一部分同源群染色体遗传差异分析

崔法1,赵春华1,**,鲍印广1,宗浩1,2,王玉海1,3,王庆专1,杜斌1,马航远4,王洪刚1,*   

  1. 1山东农业大学作物生物学国家重点实验室 / 国家小麦改良中心山东泰安分中心 / 山东农业大学农学院,山东泰安 271018; 2中国农业科学院烟草研究所 / 农业部烟草类作物质量控制重点开放实验室,山东青岛 266101; 3山东枣庄学院,山东枣庄 277100; 4山东省枣庄市农科院,山东枣庄 277100
  • 收稿日期:2010-03-29 修回日期:2010-05-29 出版日期:2010-09-12 网络出版日期:2010-07-12
  • 通讯作者: 王洪刚, Email: hgwang@sdau.edu.cn, Tel: 0538-8242141
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101700)资助。

Genetic Differences in Homoeologous Group 1 of Seven Types of Winter Wheat Aimengniu

GUI Fa1,ZHAO Chun-Hua1**,BAO Yi-Guang1,ZONG Hao12,WANG Yu-Hai13,WANG Qiang-Zhuan1,DU Bin1,MA Hang-Yuan4,WANG Hong-Gang1*   

  1. 1 National Key Laboratory of Crop Biology / Tai’an Subcenter of National Wheat Improvement Center / Agronomy College, Shandong Agricultural University, Tai’an 271018, China; 2 Tobacco Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Tobacco Quality Control, Ministry of Agriculture, Qingdao 266101, China; 3 Zaozhuang College, Zaozhuang 277100, China; 4 Municipal Academy of Agricultural Sciences, Zaozhuang 277100, China
  • Received:2010-03-29 Revised:2010-05-29 Published:2010-09-12 Published online:2010-07-12
  • Contact: WANG Hong-Gang,Email:hgwang@sdau.edu.cn,Tel:0538-8242141

摘要: 由山东农业大学创制的矮孟牛是重要的冬小麦遗传资源。为了揭示矮孟牛种质第一部分同源群染色体的遗传差异,本研究利用分子标记和基因组原位杂交方法,对矮孟牛I型至VII型7个姊妹系的遗传差异进行了鉴定。PCR结果显示,矮孟牛II型、IV至VII型中含有1RS和1BL,不含1BS和1RL;I型和III型中含有正常的1B染色体。基因组原位杂交结果证明,在矮孟牛II型、IV型-VII型中1RS取代了1BS,而在矮孟牛I型和III型中含有正常的小麦染色体组。利用138个多态性标记分析了7个类型第一部分同源群的遗传差异,其中3个标记检测到矮孟牛V型的特异片段,即位于1A染色体的标记Xwmc336Xmag1884及位于1B染色体的Xgwm124,分别源于牛朱特和矮丰3号。本研究结果揭示了矮孟牛7个类型第一部分同源群的遗传差异,为深入研究和利用该种质资源奠定了基础。

关键词: 冬小麦种质, 遗传差异, 基因组原位杂交, 分子标记

Abstract: Aimengniu (Hereafter AMN), cultivated by Shandong Agricultural University, is a renowned Chinese winter wheat germplasm. Knowing better its genetic component is of great value and necessity for its in-depth utilization and study. Purpose of this study is to reveal the genetic differences in detail among seven AMN-derived types. Both molecular markers and genomic in situ hybridization were used to identify translocation between 1B and 1R in seven AMN-derived types. PCR results of primers specific for 1R and 1B detected the presence of both 1RS and 1BL chromatin and absence of 1BS and 1RL in AMNII and AMNIV to VII, while AMNI and AMNIII contained common 1B chromatin. Genomic in situ hybridization confirmed the replacement of chromosome arm 1BS by 1RS in AMNII and AMNIV to VII, and a typical common wheat karyotype was contained in AMNI and AMNIII. In addition, genetic differences among seven AMN-derived types in homoeologous group 1 were detected by 138 polymorphic markers, and genotypic information for each and every one of seven AMN-derived types were represented. Specific segments of AMNV were detected by 3 markers, Xwmc336-Xmag1884 (1A)and Xgwm124 (1B), originating from Neuzucht and Aifeng3 respectively. The results above revealed that genetic differences exist among seven sister lines of germplasm AMN in homoeologous group 1, which will facilitate its further utilization and study.

Key words: Winter wheat germplasm, Genetic difference, Genomic insitu hybridization, Molecular marker

[1] Seo Y W, Jang C S, Johnson J W. Development of AFLP and STS markers for identifying wheat-rye translocations possessing 2RL
[J].Euphytica
[2] Villareal R L, Banuelos O, Mujeeb-Kazi A, Rajaram S. Agronomic performance of chromosomes 1B and T1B×1RS near-isolines in the spring bread wheat Seri M82
[J].Euphytica
[3] Lelley T, Eder C, Grausgruber H. Influence of 1BL?1RS wheat-rye chromosome translocation on genotype by environment interaction
[J].J Cereal Sci
[4] Alkhimova A G, Heslop-Harrison J S, Shchapova A I, Vershinin A V. Rye chromosome variability in wheat-rye addition and substitution lines
[J].Chromosome Res
[5] Röder M S, Korzun V, Gill B S, Ganal M W. The physical mapping of microsatellite markers in wheat. Genome,1998, 41: 278-283
[6] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023
[7] Bryan G J, Collins A J, Stephenson P, Orry A, Smith J B, Gale M D. Isolation and characterisation of microsatellites from hexaploid bread wheat
[J].Theor Appl Genet
[8] Kamel C, Varshney R K, Graner A, Valkoun J. Generation and exploitation of EST-derived SSR markers for assaying molecular diversity in durum wheat populations
[J].Genet Resour Crop Evol
[9] Hao Y F, Liu A F, Wang Y H, Feng D S, Gao J R, Li X F, Liu S B, Wang H G. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat
[J].Theor Appl Genet
[10] Li Y, Song Y, Zhou R, Branlard G, Jia J Z. Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population
[J].Plant Breed
[11] Huang X Q, Cöster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L). Theor Appl Genet, 2003, 106: 1379-1389
[12] Huang X Q, Kempf H, Ganal M W, Röder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticumaestivum L)
[J].Theor Appl Genet
[13] Röder M S, Huang X Q, Ganal M W. Wheat microsatellites: potential and implications. Biotechnol Agric For, 2004, 55: 255-266
[14] Li Q-Q(李晴祺), Wang H-G(王洪刚), Li S-S(李斯深), Kong L-R(孔令让). Creation, Evaluation and Utilization of Winter Wheat Germplasm (冬小麦种质创新与评价利用). Jinnan: Shandong Science and Technology Press, 1998. pp 1-34 (in Chinese)
[15] Liu C(刘成), Yang Z-J(杨足君), Feng J(冯娟), Zhou J-P(周建平), Chi S-H(迟世华), Ren Z-L(任正隆). Development of Dasypyrum genome specific marker by using wheat microsatellites. Hereditas (遗传), 2006, 28(12): 1573-1579 (in Chinese with English abstract)
[16] Zhang L Y, Bernard M, Leroy P, Feuillet C, Sourdille P. High transferability of bread wheat EST-derived SSRs to other cereals
[J].Theor Appl Genet
[17] Zhang L Y, Ravel C, Bernard M, Balfourier F, Leroy P, Feuillet C, Sourdille P. Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species
[J].Theor Appl Genet
[18] Yu J K, Dake T M, Singh S, Benscher D, Li W L, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818
[19] Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat
[J].Theor Appl Genet
[20] Peng J H, Lapitan N L V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers
[J].Funct Integr Genomics
[21] Holton T A, Christopher J T, McClure L, Harker N, Henry R J. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat
[J].Mol Breed
[22] Chen H-M(陈海梅), Li L-Z(李林志), Wei X-Y(卫宪云), Li S-S(李斯深), Lei T-D(雷天东), Hu H-Z(胡海州), Wang H-G(王洪刚), Zhang X-S(张宪省). Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull (科学通报), 2005, 50(20): 2328-2336 (in Chinese)
[23] Chen J-F(陈军方), Ren Z-L(任正隆), Gao L-F(高丽锋), Jia J-Z(贾继增). Developing new SSR markers from EST of wheat. Acta Agron Sin (作物学报), 2005, 31(2): 154-158 (in Chinese with English abstract)
[24] Chen Q, Conner R L, Ahmad F, Laroche A, Fedak G, Thomas J B. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum ponticum and T
[J].aestivum × Th. intermedium as sources of resistance to wheat steak mosaic virus and its vector, Aceria tosichella. Theor Appl Genet
[25] Qi Z J, Chen P D, Liu D J, Li Q Q. A new secondary reciprocal translocation discovered in Chinese wheat
[J].Euphytica
[26] Qi Z-J (亓增军), Liu D-J(刘大钧), Chen P-D(陈佩度), Li Q-Q(李晴祺). Molecular cytogenetic analysis of wheat germplasm Aimengniu. Acta Bot Sin(植物学报),2001, 43(5): 469-474 (in Chinese with English abstract)
[27] Qi Z-J(亓增军), Liu D-J(刘大钧), Chen P-D(陈佩度), Wang S-L(王苏玲), Li S-S(李斯深), Li Q-Q(李晴祺). Genetic transmission characteristics of the new wheat-rye complex translocation discovered in winter wheat germplasm Aimengniu. Acta Agron Sin (作物学报), 2001, 27(5): 582-587 (in Chinese with English abstract)
[28] Wang S-S(王珊珊), Li X-Q(李秀全), Tian J-C(田纪春). Genetic diversity of main parent of wheat Aimengniu and its pedigree on SSR markers. Mol Plant Breed (分子植物育种), 2007, 5(4): 485-490 (in Chinese with English abstract)
[29] Xiao J(肖静), Wang S-S(王珊珊), Li X-Q(李秀全), Liu J-L(刘金良), Tian J-C(田纪春). Genetic diversity analysis and fingerprint identification of ‘Aimengniu’ and its deritives. Mol Plant Breed (分子植物育种), 2009, 7(3): 483-489 (in Chinese with English abstract)
[30] Liu X-P(刘现鹏). Relationship between the quality and the protein of kernel of wheat. Master Dissertation of Shandong Agricultural University, 2002 (in Chinese with English abstract)
[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[5] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[6] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[7] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[8] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[9] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[10] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[11] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[12] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[13] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[14] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
[15] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!