欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1864-1869.doi: 10.3724/SP.J.1006.2010.01864

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

ahFAD2A等位基因在中国花生小核心种质中的分布及其与种子油酸含量的相关性分析

雷永,姜慧芳,文奇根,黄家权,晏立英,廖伯寿*   

  1. 国农业科学院油料作物研究所 / 农业部油料作物生物学重点开放实验室, 湖北武汉 430062
  • 收稿日期:2010-04-14 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 廖伯寿, E-mail: lboshou@hotmail.com
  • 基金资助:

    本研究由国家自然科学基金项目(30671311)和国家高技术研究发展计划(863计划)项目(2006AA10A115, 2006AA10A114)资助。

Frequency of ahFAD2A Alleles and Its Association with Oleic Acid Content in the Peanut Mini Core Collection from China

LEI Yong,JIANG Hui-Fang,Wen Qi-Gen,HUANG Jia-Quan,YAN Li-Ying,LIAO Bo-Shou*   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
  • Received:2010-04-14 Published:2010-11-12 Published online:2010-08-30
  • Contact: LIAO Bo-Shou,E-mail:lboshou@hotmail.com

摘要: 在中国小核心花生种质中发掘出油酰PC脱氢酶的2个等位基因(ahFAD2A-wtahFAD2A-m)。研究结果表明: (1)突变型等位基因(ahFAD2A-m)与野生型等位基因(ahFAD2A-wt)在编码区442 bp的SNP(448 bpG>A)可导致编码氨基酸的替换(D150N);(2) 突变型基因ahFAD2A-m在中国花生小核心种质中广泛存在,出现的频率为53.1%,野生型基因ahFAD2A-wt出现的频率为46.9%;(3) 突变型基因ahFAD2A-m在密枝亚种(普通型和龙生型变种)中出现的频率(82.8%)显著高于其在疏枝亚种(珍珠豆型和多粒型变种)材料中出现的频率(15.4%),卡方测验结果表明,核心种质的油酸含量与其携带的等位基因类型密切相关(χ2=98.71,χ20.01,3=11.34,P<0.01),携带突变型基因(ahFAD2A-m)材料的油酸平均值显著高于野生型基因的材料(t =18.48>t0.01=2.62,P < 0.01);(4) 携带突变型等位基因ahFAD2A-m的花生材料其油酸含量显著高于携带野生型基因的材料,进一步表明ahFAD2A-m等位基因的存在与种子油酸含量密切相关。

关键词: 花生, ahFAD2A, 等位基因, 油酸含量

Abstract: Oleic acid content of cultivated peanut (Arachis hypogaea L.) seeds is controlled by the activity of oleoyl-PC desaturase, encoded by two homologous genes (ahFAD2A and ahFAD2B), high oleic acid content results from the mutation of ahFAD2A and ahFAD2B, simultaneously. Two alleles of the ahFAD2A (wild type ahFAD2A-wt and mutation type ahFAD2A-m) exist in the normal oleic accessions, whereas only the ahFAD2A-m allele exists in the high oleic accessions. The ahFAD2A-m is a spontaneous mutation type of ahFAD2A-wt (G-to-A at site 448 bp resulting in a D to N at 150 amino acid position), which results in a dysfunctional desaturase. A specific PCR primer pair for the ahFAD2A amplification was developed in this study. According to the sequencing result of PCR production of the mutant and wild-type ahFAD2A alleles, mutant allele (ahFAD2A-m) accounted for 53.1% of the accessions in the mini-core collection from China, which was frequently found in subspecies hypogaea accessions but absent from subspecies fastigiata accessions; the highly positive correlation between the ahFAD2A-m and the higher oleic acid content was observed. A new SNP was found at the 417 bp (T/C) in the open reading frame (ORF), which did not result in the amino acid substitution, and was found no correlation between the SNP of 417 bp and the oleic content. These results will be helpful for the breeders to select the parent material in the peanut high oleic acid breeding program.

Key words: Peanut (Arachis hypogae L.), ahFAD2A, Allele, Oleic acid content

[1]Braddoc J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995, 60: 489–493
[2]Mugendi J B, Sims C A, Gorbet D W, O’Keefe S F. Flavor stability of high-oleic peanuts stored at low humidity. J Am Oil Chem Soc, 1998, 75: 21–25
[3]O’Byrne, D J, Knauft D A, Shireman R B. Low fat-monounsaturated rich diets containing high-oleic peanuts improves serum lipoprotein profiles. Lipids, 1997, 32: 687–695
[4]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 14: 7–11
[5]Knauft D A, Gorbet D W, Norden A J. SunOleic 95R peanut. Florida Agricultural Experimental Stationn Circular, 1995, Miami, No. S-398
[6]Gorbet D W, Knauft D A. SunOleic 97R peanut. Florida Agricultural Experimental Stationn Circular, 1997, No. S-400
[7]Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6: 147–158
[8]Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in spanish market-type peanut lines. Mol Breed, 2002, 9: 183–190
[9]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in spanish markettype lines. Theor Appl Genet, 2000, 101: 1131–1138
[10]Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered, 1989, 80: 252–253
[11]Jung S, Powell G L, Moore K, Abbott A G. The high oleate trait in the cultivated peanut (Arachis hypogaea): II. Molecular basis and genetics of the trait. Mol Gene Genet, 2000, 263: 806–811
[12]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805
[13]Chu Y, Ramos M L, Holbrook C C, Ozias-Akins P. Genetic mutation of oleoyl-PC desaturase (ahFAD2A) in the mini-core collection of the US peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378
[14]Jiang H-F(姜慧芳), Duan N-X(段乃雄), Ren X-P(任小平). Evaluation of groundnut germplasm. Chin J Oil Crop Sci (中国油料作物学报), 1998, 20(3): 31–35 (in Chinese with English abstract)
[15]Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and exploration of new resource with high oleate. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(3): 294–299 (in Chinese with English abstract)
[16]Bruner A C, Jung S, Abbott A G, Powel G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced Oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001, 41: 522–526
[17]Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Holbrooka C C, Upadhyaya H D. Peanut core collection established in china and compared with ICRISAT mini core collection. Acta Agron Sin (作物学报), 2008, 34(1): 25−30 (in Chinese with English abstract)
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[15] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!