作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1864-1869.doi: 10.3724/SP.J.1006.2010.01864
雷永,姜慧芳,文奇根,黄家权,晏立英,廖伯寿*
LEI Yong,JIANG Hui-Fang,Wen Qi-Gen,HUANG Jia-Quan,YAN Li-Ying,LIAO Bo-Shou*
摘要: 在中国小核心花生种质中发掘出油酰PC脱氢酶的2个等位基因(ahFAD2A-wt和ahFAD2A-m)。研究结果表明: (1)突变型等位基因(ahFAD2A-m)与野生型等位基因(ahFAD2A-wt)在编码区442 bp的SNP(448 bpG>A)可导致编码氨基酸的替换(D150N);(2) 突变型基因ahFAD2A-m在中国花生小核心种质中广泛存在,出现的频率为53.1%,野生型基因ahFAD2A-wt出现的频率为46.9%;(3) 突变型基因ahFAD2A-m在密枝亚种(普通型和龙生型变种)中出现的频率(82.8%)显著高于其在疏枝亚种(珍珠豆型和多粒型变种)材料中出现的频率(15.4%),卡方测验结果表明,核心种质的油酸含量与其携带的等位基因类型密切相关(χ2=98.71,χ20.01,3=11.34,P<0.01),携带突变型基因(ahFAD2A-m)材料的油酸平均值显著高于野生型基因的材料(t =18.48>t0.01=2.62,P < 0.01);(4) 携带突变型等位基因ahFAD2A-m的花生材料其油酸含量显著高于携带野生型基因的材料,进一步表明ahFAD2A-m等位基因的存在与种子油酸含量密切相关。
[1]Braddoc J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995, 60: 489–493 [2]Mugendi J B, Sims C A, Gorbet D W, O’Keefe S F. Flavor stability of high-oleic peanuts stored at low humidity. J Am Oil Chem Soc, 1998, 75: 21–25 [3]O’Byrne, D J, Knauft D A, Shireman R B. Low fat-monounsaturated rich diets containing high-oleic peanuts improves serum lipoprotein profiles. Lipids, 1997, 32: 687–695 [4]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 14: 7–11 [5]Knauft D A, Gorbet D W, Norden A J. SunOleic 95R peanut. Florida Agricultural Experimental Stationn Circular, 1995, Miami, No. S-398 [6]Gorbet D W, Knauft D A. SunOleic 97R peanut. Florida Agricultural Experimental Stationn Circular, 1997, No. S-400 [7]Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6: 147–158 [8]Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in spanish market-type peanut lines. Mol Breed, 2002, 9: 183–190 [9]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in spanish markettype lines. Theor Appl Genet, 2000, 101: 1131–1138 [10]Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered, 1989, 80: 252–253 [11]Jung S, Powell G L, Moore K, Abbott A G. The high oleate trait in the cultivated peanut (Arachis hypogaea): II. Molecular basis and genetics of the trait. Mol Gene Genet, 2000, 263: 806–811 [12]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805 [13]Chu Y, Ramos M L, Holbrook C C, Ozias-Akins P. Genetic mutation of oleoyl-PC desaturase (ahFAD2A) in the mini-core collection of the US peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378 [14]Jiang H-F(姜慧芳), Duan N-X(段乃雄), Ren X-P(任小平). Evaluation of groundnut germplasm. Chin J Oil Crop Sci (中国油料作物学报), 1998, 20(3): 31–35 (in Chinese with English abstract) [15]Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and exploration of new resource with high oleate. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(3): 294–299 (in Chinese with English abstract) [16]Bruner A C, Jung S, Abbott A G, Powel G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced Oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001, 41: 522–526 [17]Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Holbrooka C C, Upadhyaya H D. Peanut core collection established in china and compared with ICRISAT mini core collection. Acta Agron Sin (作物学报), 2008, 34(1): 25−30 (in Chinese with English abstract) |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[5] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[6] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[7] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[8] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[9] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[10] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[11] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[12] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[13] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[14] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[15] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
|