欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1853-1863.doi: 10.3724/SP.J.1006.2010.01853

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于rDNA-ITS序列探讨甘蔗近缘属种的系统进化关系

刘新龙1,苏火生1,马丽1,陆鑫1,应雄美1,蔡青1,2,范源洪1,*   

  1. 1 云南省农业科学院甘蔗研究所 / 云南省甘蔗遗传改良重点实验室, 云南开远 661600; 2 云南省农业科学院生物技术与种质资源研究所, 云南昆明 650223
  • 收稿日期:2010-03-16 修回日期:2010-06-27 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 范源洪, E-mail: fyhysri@vip.sohu.com
  • 基金资助:

    本研究由云南省应用基础研究计划重点项目(2006C0013Z)和国家科技基础条件平台工作项目子专题(2007DKA21002-11)资助。

Phylogenetic Relationships of Sugarcane Related Genera and Species Based on ITS Sequences of Nuclear Ribosomal DNA

LIU Xin-Long1,SU Huo-Sheng1,MA Li1,LU Xin1,YING Xiong-Mei1,CAI Qing1,2,FAN Yuan-Hong1,*   

  1. 1 Yunnan Key Laboratory of Sugarcane Genetic Improvement / Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China; 2 Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
  • Received:2010-03-16 Revised:2010-06-27 Published:2010-11-12 Published online:2010-08-30
  • Contact: FAN Hong-Li,E-mail:fyhysri@vip.sohu.com

摘要: 以狼尾草属(Pennisetum Rich.)的象草(P. purpureum) 为外群体,依据rDNA-ITS序列探讨了甘蔗亚族(Saccharinae)内与甘蔗植物分类关系较近的8属37种120份材料的系统进化关系,结果表明,ITS1序列长度为204~208 bp,变异位点91个,简约信息位点70个,GC含量为60.40%~69.10%;ITS2序列长度为215~220 bp,变异位点93个,简约信息位点68个,GC含量为66.10%~73.40%;5.8sDNA序列长度为164 bp, 变异位点18个,简约信息位点9个,GC含量为54.1%~58.0%;根据变异位点,简约信息位点占总位点的比例可以看出,ITS序列比5.8sDNA序列变异程度高,其中ITS1序列又较ITS2序列变异丰富。属种间遗传距离表明芒属(Miscanthus)和荻属(Triarrhena)与甘蔗属(Saccharum)的亲缘关系最近,其次为蔗茅属(Erianthus)和河八王属(Narenga);而莠竹属(Microstegium)、大油芒属(Spodiopogon)、白茅属(Imperata)与甘蔗属亲缘关系较远。根据甘蔗近缘属种的NJ和MP系统发育关系,支持将斑茅(E. arundinaceus)归入蔗茅属,荻属归入芒属的观点;河八王属的河八王(N. porphyrocoma)与滇蔗茅(E. rockii)亲缘关系较近,而与同属的金猫尾(N. fallax)亲缘关系较远;蔗茅属和芒属属种系统进化关系较其他属种复杂;有4份材料被发现鉴定有误,不应用于后续研究。

关键词: 甘蔗, ITS, 系统进化, 甘蔗亚族

Abstract: Sugarcane related genera and species are important germplasm resources for sugarcane breeding and germplasm innovation. To effectively collect these wild resources and utilize them, ITS (Internal Transcribed Spacer) sequence of 120 accessions which belong to eight genera and thirty seven species were used to analyze their genetic relationships and construct phylogentic relationships with P. purpureum as an outgroup. The results showed the sequence lengths of ITS1, ITS2 and 5.8sDNA of all accessions were 204–208 bp, 215–220 bp, and 164 bp respectively, and their variable sites were 91, 93, and 18, the informative sites were 70, 68, and 9, the GC content was 60.4%–69.1%, 66.1%–73.4% and 54.1%–58.0%. According to the ratio of the variable sites and informative sites to all sites, ITS sequence was richer in variances than 5.8sDNA sequence, and the variances of ITS1 sequence were richer than those of ITS2’s. The genetic distance analysis between sugarcane related genera and species indicated that Miscanthus and Triarrhena were the closest to Saccharum, and the closer ones were Erianthus and Narenga, so the species from these genera should be more considered on collecting sugarcane wild resources in the future; Microstegium, Spodiopogon and Imperata represented farther relationships with Saccharum. The sugarcane related genera and species were separated into ten groups according to the phylogenetic tree of neighbor-joining and maximum parsimony. According to their phylogenetic relationships, E. arundinaceus should be separated from Saccharum and clastified as Erianthus species; Triarrhena shoud be included in Miscanthus; the two species of Narenga did not remain in the same group, but N. porphyrocoma and E. rockii were clustered into the same group, and N. fallax did not belong to any groups, so further researches are needed in identifying the two species. These species from Erianthus and Miscanthus were put in different groups, indicating the very complex genetic relationships within Erianthus and Miscanthus, their species possess big genetic differences. Four samples were found error in classifying species, so the application of their ITS sequences should be avoided. 

Key words: Sugarcane, ITS, Phylogeny, Saccharinae

[1]Yu H(于慧), Zhao N-X(赵南先). Geographical distribution of Saccharinae (Gramineae). J Trop Subtrop Bot (热带亚热带植物学报), 2004, 12(1): 29–35 (in Chinese with English abstract)
[2]Brown J S, Schnell R J, Power E J, Douglas S L, Kuhn D N. Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genet Resour Crop Evol, 2007, 54: 627–648
[3]Mukherjce S K. Origin and distribution of Sacharum. Bot Gaz, 1957, 119: 55–61
[4]Daniels J, Daniels C A. Geographical, historical and cultural aspects of the origin of the Indian and Chinese sugarcanes S. barberi and S. sinense. Sugarcane Breed Newslett, 1975, 36: 4–23
[5]Wen Y(文颖). Intergenetic crossing between Saccharum and related plants and their chromosome behavior. Sugarcane Canesugar (甘蔗糖业), 1998, 3: 1–7 (in Chinese with English abstract)
[6]Coto O, Cornide M T, Calvo D, Canales E, D’Hont A, de Prada F. Genetic diversity among wild sugarcane germplasm from Laos revealed with markers. Euphytica, 2002, 123: 121–130
[7]Chen H(陈辉), Fan Y-H(范源洪), Xiang-Yu J-G(向余颈攻), Cai Q(蔡青), Zhang Y-P(张亚平). Phylogenetic relationships of saccharum and related species inferred from sequence analysis of the nrDNA ITS region. Acta Agron Sin (作物学报), 2003, 29(3): 379–385 (in Chinese with English abstract)
[8]Cai Q(蔡青), Fan Y-H(范源洪), Aitken K, Piperidis G, McIntyre C L, Jackson P. Assessment of the phylogenetic relationships within the “Saccharum complex” using AFLP markers. Acta Agron Sin (作物学报), 2005, 31(5): 551–559 (in Chinese with English abstract)
[9]Selvi A, Nair N V, Noyer J L, Singh N K, Balasundaram N, Bansal K C, Koundal K R, Mohapatra T. AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex. Saccharum Erianthus. Genet Resour Crop Evol, 2006, 53: 831–842
[10]Nakayama S. Intra-species diversity of interspersed sequences in polyploid cultivated Saccharum species. Genes & Genetic Systems, 2006, 81: 418–418
[11]Besse P, McIntyre C L, Berding N. Ribosomal DNA variations in Erianthus, a wild sugarcane relative ( Andropogoneae-Saccharinae). Theor Appl Genet, 1996, 92: 733–743
[12]Besse P, McIntyre C L, Berding N. Characterisation of Erianthus sect. Ripidium and Saccharum germplasm (Andropogoneae-Saccharinae ) using RFLP markers. Euphytica, 1997, 93: 283–292
[13]Nair N V, Nair S, Sreenivasan T V, Mohan M. Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Res Crop Evol, 1999, 46: 73–79
[14]Pan Y B, Burner D M, Legendre B L. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetica, 2000, 108: 285–295
[15]Zhang Y-W(张云武), Long H-S(龙火生), Fan Y-H(范源洪), Yao Y-G(姚永刚), Cai Q(蔡青), Zhang Y-P(张亚平). Sequence variation of rbcl gene and evolution of Saccharum and related species. Acta Bot Yunnan (云南植物研究), 2002, 24(1): 29–36 (in Chinese with English abstract)
[16]Chen S-F(陈少风), Dong S-S(董穗穗), Wu W(吴伟), Shi S-H(施苏华), Zhou P-H(周朴华). Phylogenetics of Triarrhena and related genera based on ITS sequence data. J Wuhan Bot Res (武汉植物学研究), 2007, 25(3): 239–244 (in Chinese with English abstract)
[17]Kumar S, Nei M, Dudley J, Tamura K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform, 2008, 9: 299–306
[18]Editorial Board of the Flora of China (中国植物志编辑部委员会). Flora of China, Vol. 10, No. 2 (中国植物志第十卷第二分册). Beijing: Science Press, 1997. pp 4–46 (in Chinese)
[19]Heinz K J. Report of the Standing Committee on Germplasm and Breeding. In: Proc. of the XVII Congress of the ISSCT. Philippines, 1980. LIV–LVI
[20]Liu X-L(刘新龙), Cai Q(蔡青), Wang L-P(王丽萍), Ma L(马丽), Lu X(陆鑫), Ying X-M(应雄美), Mao J(毛钧). The advance of sugarcane germplasm resource in genetic diversity and crossing utilization. Sugar Crops China (中国糖料), 2007, (1): 46–49 (in Chinese with English abstract)
[21]Emily A H,  Stephen P L, Thomas B V, Michael B J, John C B. Miscanthus for renewable energy generation: european union experience and projections for Illinois. Mitigation Adapt Strategies Global Change, 2004, 9: 433–451
[22]Wilfred Vermerris. Genetic Improvement of Bioenergy Crops. New York: Springer Press, 2008. pp 295–308
[23]Lao Z-Z(廖兆周), Lao F-Y(劳方业), Zhou Y-H(周耀辉), Li Q-W(李奇伟), Deng H-H(邓海华), Huang H-N(黄鸿能), Fu C(符城), Hu H-X(胡后祥), Yang Y-H(杨业后), Chen X-W(陈西文). Breeding of drought-tolerant sugarcane lines with E. arundinaceus germplasm. Acta Agron Sin (作物学报), 2002, 28(6): 841–846 (in Chinese with English abstract)
[24]Wang L-P(王丽萍), Cai Q(蔡青), Fan Y-H(范源洪), Lu X(陆鑫), Aiken K, Ma L(马丽), Liu X-L(刘新龙), Xia H-M(夏红明). Study on the distant hybrid utilization between Saccharum and Erianthus arundinanceus. Southwest China J Agric Sci (西南农业学报), 2007, 20(4): 721–726 (in Chinese with English abstract)
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[7] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[8] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[9] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[10] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[11] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[12] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[13] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[14] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[15] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!