欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1843-1852.doi: 10.3724/SP.J.1006.2010.01843

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用SSR标记分析1949—2005年华南地区常规籼稻主栽品种遗传多样性及变化趋势

刘传光1,张桂权2,*   

  1. 1 广东省农业科学院水稻研究所,广东广州510640;2 华南农业大学农学院,广东广州510642
  • 收稿日期:2010-03-10 修回日期:2010-07-05 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 张桂权, E-mail: gqzhang@scau.edu.cn
  • 基金资助:

    本研究由国家农业科技跨越计划项目(2004-2)和广东省重大科技专项(2006A20202004)资助。

SSR Analysis of Genetic Diversity and the Temporal Trends of Major Commercial Inbred Indica Rice Cultivars in South China in 1949–2005

LIU Chuan-Guang1,ZHANG Gui-Quan2,*   

  1. 1 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; 2 College of Agriculture, South China Agricultural University, Guangzhou 510642, China
  • Received:2010-03-10 Revised:2010-07-05 Published:2010-11-12 Published online:2010-08-30
  • Contact: ZHANG Gui-Quan,E-mail:gqzhang@scau.edu.cn

摘要: 利用均匀分布于水稻基因组的300个SSR标记对95个华南地区不同年代常规籼稻主栽品种进行分析,研究该地区常规稻品种的遗传多样性及其变化趋势。检测到236个SSR标记有多态性,共获得776个等位基因,每个位点等位基因2~12个,平均3.29个,共有206个位点的等位基因数介于2~4个,占全部多态性位点的87.3%。多态性标记位点的PIC值平均为0.42,变化范围为0.041~0.790。不同染色体的位点多态性差异显著,其中第10染色体的位点平均等位基因数最多,PIC值最高,而第5染色体的位点平均等位基因数最少,PIC值最低;6个年代中,50~70年代育成品种包含等位基因数呈显著的上升趋势,70年代达最高值2.83,随后逐渐下降。分子方差分析(AMOVA)结果显示不同年代间遗传变异仅占总体变异的3.77%,但仍达极显著水平(P<0.001)。不同年代育成品种的遗传距离(GD)呈下降趋势。聚类分析结果显示,在遗传相似系数(GS)为0.685处可将品种区分为5大类,表明华南地区各时期的常规稻品种遗传改良都是围绕少数骨干亲本进行的。试验结果显示,华南地区籼稻品种的遗传多样性狭窄且随年代而变化,70年代以后呈下降趋势,在今后的育种中应扩大亲本选材范围、拓宽育种亲本的遗传基础以提高育成品种的遗传多样性。

关键词: 华南地区, 水稻, 遗传多样性, SSR标记

Abstract: Three hundred SSR makers distributing evenly on the whole rice genome wereused to assess the genetic diversity among 95 major commercial inbred indica rice cultivars in South China in 1949–2005. Of the 300 SSR loci, 236 loci were polymorphic. A total of 776 alleles were detected at the 236 polymorphic loci. The mean number of alleles per locus was 3.29 with a range from 2 to 12. Two hundred and six SSR loci with 2 to 4 alleles accounted for 87.3% of all the 236 polymorphic loci. The average polymorphism information content (PIC) value was 0.42 with a range from 0.041 to 0.790. Among the 12 chromosomes, chromosome 10 showed the greatest values in mean allele number and PIC value, but chromosome 5 showed the lowest values. In six investigated decades, the number of detected alleles per locus increased from 1950s to 1970s, and then decreased after 1970s. Analysis of molecular variance (AMOVA) indicated that the genetic variation among the six decades was significant (P<0.001),though it just accounted for 3.77% of the total genetic variation. Genetic distance (GD) among cultivars gradually decreased from 1950s to 2000s. Clustering analysis with COMPLETE method based on genetic similarity coefficients (GS) showed that all the cultivars could be separated into five clusters with GS value 0.685. The clustering result indicated that the genetic improvement of inbred rice cultivars was just based on several core parents in different decades. It could be concluded that the genetic diversity of indica rice cultivars in South China is narrow and has been decreasing after 1970s, therefore there’s a need for incorporating new variability into the existent rice germplasm for broadening the genetic basis of cultivars.

Key words: South China, Rice, Genetic diversity, SSR

[1]Walsh J. Genetic vulnerability down on the farm. Science, 1981, 214: 161–164
[2]Porceddu E, Ceoloni C, Lafiandra D, Tanzarella O, Scarascia A, Mugnozzaet G T. Genetic resources and plant breeding: problems and prospects. In: Miller T E, Koebner R M, eds. Proceedings of the Seventh International Wheat Genetics Symposium, Institute of Plant Science Research, Cambridge, 1988. pp 7–22
[3]Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H, Bohn M, Melchinger A. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet, 2005, 111: 838–845
[4]Reif J C, Zhang P, Dreisigacker S, Warburton M, Ginkel M, Hoisington D, Bohn M, Melchinger A. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 2005, 110: 859–864
[5]Smale M. The green revolution and wheat genetic diversity: some unfounded assumptions. World Development, 1997, 25: 1257–1269
[6]Maccaferri M, Sanguineti M C, Donini P, Tuberosa R. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet, 2003, 107: 783–797
[7]Khlestkina E K, Huang X Q, Quenum F J. Genetic diversity in cultivated plants—loss or stability? Theor Appl Genet, 2004, 108: 1466–1472
[8]Khlestkina E K, Röder M S, Efremova T T, Börner A, Shumny V K. The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers. Plant Breed, 2004, 123: 122–127
[9]Dobrotvorskaya T V, Martynov S P, Pukhalskyi V A. Trends in genetic diversity change of spring bread wheat cultivars released in Russia in 1929-2003. Russ J Genet, 2004, 40: 1245–1257
[10]Zhuang J-Y(庄杰云), Qian H-R(钱惠荣), Lu J(陆军), Lin H-X(林鸿宣), Zheng K-L(郑康乐). Preliminary study on the genetic variability of commercial indica rice varieties in China. Sci Agric Sin (中国农业科学), 1996, 29(2): 17–22 (in Chinese with English abstract)
[11]Wei X-H(魏兴华), Tang S-X(汤圣祥), Jiang Y-Z(江云珠), Yu H-Y(余汉勇), Qiu Z-E(裘宗恩), Yan Q-C(颜启传). Genetic diversity of allozyme associated with morphological traits in Chinese improved rice varieties. Chin J Rice Sci (中国水稻科学), 2003, 17(2): 123–128 (in Chinese with English abstract)
[12]Qi Y-W(齐永文), Zhang D-L(张冬玲), Zhang H-L(张洪亮), Wang M-X(王美兴), Sun J-L(孙俊立), Liao D-Q(廖登群), Wei X-H(魏兴华), Qiu Z-E(裘宗恩), Tang S-X(汤圣祥), Cao Y-S(曹永生), Wang X-K(王象坤), Li Z-C(李自超). Genetic diversity of rice cultivars bred in China and their changing trend among fifty years. Chin Sci Bull (科学通报), 2006, 51(6): 693–699 (in Chinese with English abstract)
[13]Wei X H, Yuan X P, Yu H Y, Wang Y P, Xu Q, Tang S X. Temporal changes in SSR allelic diversity of major rice cultivars in China. J Genet Genomics, 2009, 36: 363–370
[14]Zhu M Y, Wang Y Y, Zhu Y Y, Lu B R. Estimating genetic diversity of rice landraces from Yunnan by SSR assay and its implication for conservation. Acta Bot Sin, 2004, 46(12): 1458–1467
[15]Zhang D-L(张冬玲), Zhang H-L(张洪亮), Wei X-H(魏兴华), Qi Y-W(齐永文), Wang M-X(王美兴), Sun J-L(孙俊立), Ding L(丁立), Tang S X(汤圣祥), Qiu Z-E(裘宗恩), Cao Y-S(曹永生), Wang X-K(王象坤), Li Z-C(李自超). Genetic structure and diversity of Oryza sativa L. in Guizhou, China. Chin Sci Bull (科学通报), 2006, 51(23): 2747–2754 (in Chinese with English abstract)
[16]Li H-Y(李红宇), Hou Y-M(侯昱铭), Chen Y-H(陈英华), Xu Z-J(徐正进), Chen W-F(陈温福), Zhao M-H(赵明辉), Ma D-R(马殿荣), Xu H(徐海), Wang J-Y(王嘉宇). Evaluation on genetic diversity of the commercial rice varieties in Northeast China by SSR markers. Chin J Rice Sci (中国水稻科学), 2009, 23(4): 383–390 (in Chinese with English abstract)
[17]Jin W-D(金伟栋), Cheng B-S(程保山), Hong D-L(洪德林). Genetic diversity analysis of Japonica rice landraces (Oryza sativa L.) in Tai lake region based on SSR markers. Sci Agric Sin (中国农业科学), 2008, 41(11): 3822–3830 (in Chinese with English abstract)
[18]Wei X-H(魏兴华), Yuan X-P(袁筱萍), Yu H-Y(余汉勇), Wang Y-P(王一平), Xu Q(徐群), Tang S-X(汤圣祥). SSR analysis of genetic variation in Chinese major inbred rice varieties. Chin J Rice Sci (中国水稻科学), 2009, 23(3): 237–244 (in Chinese with English abstract)
[19]Zheng K L, Huang N, Bennett J, Khush G S. PCR-Based Marker-Assisted Selection in Rice Breeding. IRRI discussion paper series No.12. International Rice Research Institute, Manila, Philippines, 1995
[20]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L). Mol Gen Genet, 1996, 252: 597–607
[21]Botstein D R, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314–331
[22]Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987. pp 190–191
[23]Hua L(华蕾), Yuan X-P(袁筱萍), Yu H-Y(余汉勇), Wang Y-P(王一平), Xu Q(徐群), Tang S-X(汤圣祥), Wei X-H(魏兴华). A comparative study on SSR diversity in Chinese major rice varieties planted in 1950s and during the most recent ten years. Chin J Rice Sci (中国水稻科学), 2007, 21(2): 150–154 (in Chinese with English abstract)
[24]Olufowote J O, Xu Y, Chen X, Park W D, Beachell H M, Dilday R H, Goto M, McCouch S R. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome, 1997, 40: 370–378
[25]Xu Y, Beachell H, McCouch S R. A marker-based approach to broadening the genetic base of rice in the USA. Crop Sci, 2004, 44: 1947–1959
[26]Chen Z-J(陈志军), Tang Z-X(汤在祥), Song W(宋雯), Xu C-W(徐辰武). Genetic position-based comparative study of quantitative trait loci for major traits between rice and maize. Chin J Rice Sci (中国水稻科学), 2009, 23(3): 229–236 (in Chinese with English abstract)
[27]Yu H-Y(余汉勇), Wei X-H(魏兴华), Wang Y-P(王一平), Yuan X-P(袁筱萍), Tang S-X(汤圣祥). Study on genetic variation of rice varieties derived from Aizizhan by using morphological traits, allozymes and simple sequence repeat (SSR) markers. Chin J Rice Sci (中国水稻科学), 2004, 18(6): 477–482 (in Chinese with English abstract)
[28]Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273: 1516–1517
[29]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf 8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289
[30]Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–289
[31]McNally K L, Bruskiewich R, Mackill D, Buell C R, Leach J E, Leung H. Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. Plant Physiol, 2006, 141: 26–31
[32]Andersen J R, Lübberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560
[33]Varshney R K, Graner A, Sorrells M E. Genomics-assisted breeding for crop Improvement. Trends Plant Sci, 2005, 10: 621–630
[34]Jena K K, Mackill D J. Molecular markers and their use in marker-assisted selection in rice. Crop Sci, 2008, 48: 1266–1276
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!