欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2011-2019.doi: 10.3724/SP.J.1006.2010.02011

• 综述 •    下一篇

水稻弱势粒灌浆机理与调控途径

杨建昌   

  1. 扬州大学 / 江苏省作物遗传生理重点实验室, 江苏扬州 225009
  • 收稿日期:2010-08-16 修回日期:2010-09-09 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 基金资助:

    本研究由国家自然科学基金项目(30771274), 国家科技攻关计划项目(2006BAD02A13-3-2),江苏省基础研究计划项目(BK2009005)和教育部博士学科点基金项目(200811170002)资助。

Mechanism and Regulation in the Filling of Inferior Spikelets of Rice

YANG  Jian-Chang   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Yangzhou University, Yangzhou 225009, China
  • Received:2010-08-16 Revised:2010-09-09 Published:2010-12-12 Published online:2010-10-09

摘要:  水稻籽粒充实优劣和粒重高低与颖花在穗上着生的部位有密切关系。通常, 着生在稻穗中上部早开花的强势粒, 灌浆快、充实好、粒重高; 着生在稻穗下部迟开花的弱势粒, 灌浆慢、充实差、粒重低。这种强、弱势粒灌浆的差异在大穗型超级稻品种上表现更为突出。弱势粒充实差和粒重低不仅阻碍了水稻产量潜力的发挥, 而且还会降低稻米品质, 尤其是加工品质和外观品质。关于弱势粒灌浆差的机理有许多假设, 包括同化物供应限制、库容限制、激素间不平衡、蔗糖-淀粉代谢途径关键酶活性或基因表达量低、“流”不畅等。最近研究表明, 灌浆始期籽粒库生理活性低和活跃灌浆期蔗糖转化为淀粉的生化效率低是弱势粒灌浆差的重要原因; 增加抽穗期糖花比(抽穗期茎与鞘中非结构性碳水化合物与颖花数之比)及灌浆期脱落酸与乙烯比值可以显著提高籽粒库生理活性和籽粒灌浆速率。从环境(含栽培)、植株整体水平以及籽粒内在因素等不同层次上深入研究水稻弱势粒灌浆差的机理及其调控途径, 对于破解弱势粒灌浆差的科学难题、挖掘水稻生产潜力具有十分重要的意义。

关键词: 水稻, 强势粒, 弱势粒, 灌浆, 机理, 调控

Abstract: Grain filling is the final growth stage in cereals when fertilized ovaries develop into caryopses. The degree and rate of grain filling in rice spikelets differ largely with their positions on a panicle. In general, earlier-flowering superior spikelets, usually located on apical primary branches, fill fast and produce larger and heavier grains. While later-flowering inferior spikelets, usually located on proximal secondary branches, are either sterile or fill slowly and produce smaller grains. The poor grain-filling of inferior spikelets is more aggravated in the new bred “super” rice cultivars that have numerous spikelets on a panicle. Poor filling of inferior spikelets not only limits the realization of great yield potential, but also degrades rice quality, especially milling and apparent qualities. There are many explanations to the poor filling of inferior spikelets, including carbon limitation, sink capacity limitation, unbalance in hormone levels, low activities and/or expressions of enzymes involved in sucrose-to-starch conversion, and “flow” impediment. Recent studies have shown that low physiological activities of sink (grains) at the initial grain filling and low conversion efficiency from sucrose to starch during the active grain filling period contribute to the poor filling of inferior spikelets. It is observed that the ratio of sugar to spikelets at the heading stage (amount of non-structural carbohydrate in the stems and sheaths over the number of spikelets at heading) significantly correlats with the physiological activities of sink, and the ratio of abscisic acid (ABA) to 1-aminocylopropane -1-carboxylic acid (ACC, a precursor of ethylene) significantly correlats with the grain filling rate, indicating that increases in the ratios of sugar to spikelets and of ABA to ethylene would be two important regulatory approaches to improve the filling of inferior spikelets. Further studies are essential by investigating how environmental factors (including cultivation techniques), factors of the whole plant, and factors within the spikelets regulate the filling of inferior spikelets. A deep understanding of the regulation mechanism that limits the filling of inferior spikelets would lead to efforts that could greatly enhance grain filling and, consequently, increase the yield performance of rice.

Key words: Rice, Superior spikelets, Inferior spikelets, Grain filling, Mechanism, Regulation

[1]Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996, 36: 1135-1139
[2]Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types. Plant Prod Sci, 2007, 10: 442-450
[3]Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559
[4]Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: A super-domesticate in China. Ann Bot, 2007, 100: 959-966
[5]Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38
[6]Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol, 1993, 20: 231-242
[7]Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 2000, 30: 261-270
[8]Yang J, Zhang J. Grain filling problem in “super” rice. J Exp Bot, 2010, 61: 1-5
[9]Ao H-J(敖和军), Wang S-H(王淑红), Zou Y-B(邹应斌), Peng S-B(彭少兵), Tang Q-Y(唐启源), Fang Y-X(方远祥), Xiao A-M(肖安民), Chen Y-H(陈玉梅), Xiong C-M(熊昌明). Study on yield stability and dry matter characteristics of super hybrid rice. Sci Agric Sin (中国农业科学), 2008, 41(7): 1927-1936 (in Chinese with English abstract)
[10]Wu W-G(吴文革), Zhang H-C(张洪程), Wu G-C(吴桂成), Zhai C-Q(翟超群), Qian Y-F(钱银飞), Chen Y(陈烨), Xu J(徐军), Dai Q-G(戴其根), Xu K(许轲). Preliminary study on super rice population sink characters. Sci Agric Sin (中国农业科学), 2007, 40(2): 250-257 (in Chinese with English abstract)
[11]Singh B K, Jenner C F. Association between concentration organic nutrients in the grain, endosperm cell number and grain dry weight within the ear of wheat. Aust J Plant Physiol, 1982, 9: 83-95
[12]Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): Comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46: 620-628
[13]Tsai-Mei O L, Setter T L. Enzyme activities of starch and sucrose pathways and growth of apical to basal maize kernels. Plant Physiol, 1985, 79: 848-851
[14]Sinsawat V, Steer B T. Growth of florets of sunflower (Helianthus annus L.) in relation to their position in the capitulum, shading and nitrogen supply. Field Crops Res, 1993, 34: 83-100
[15]Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle. Jpn J Crop Sci, 1941, 13: 156-169 (in Japanese)
[16]Sikder H P, Gupta D K D. Physiology of grain in rice. Indian Agric, 1976, 20: 133-141
[17]Wang Y. Effectiveness of supplied nitrogen at the primordial panicle stage on rice characteristics and yields. Int Rice Res Newsl, 1981, 6: 23-24
[18]Murty P S S, Murty K S. Spikelet sterility in relation to nitrogen and carbohydrate contents in rice. Indian J Plant Physiol, 1982, 25: 40-48
[19]Liang J, Zhang J, Cao X. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Physiol Plant, 2001, 112: 470-477
[20]Zhu Q-S (朱庆森), Cao X-Z(曹显祖), Gu Z-F(顾自奋). Studies on development dynamics of grains of hybrid rice Nanyou 3. Sci Agric Sin (中国农业科学), 1981, 14(1): 43-49 (in Chinese with English abstract)
[21]Zhu Q-S (朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦其). Growth analysis on the process of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(6): 182-193 (in Chinese with English abstract)
[22]Wang T-D(王天铎). A dynamic analysis of grain weight distribution during maturation of rice. Acta Bot Sin (植物学报), 1962, 10(2): 113-119 (in Chinese with English abstract)
[23]Wang T-D(王天铎), Yan R-H(严荣华). A dynamic analysis of grain weight distribution during maturation of rice. II. The irreversible changes in the capacity to filling. Acta Phytophysiol Sin (植物生理学报), 1964, 1(1): 9-14 (in Chinese with English abstract)
[24]Yoshida S. Physiological aspects of grain yield. Ann Rev Plant Physiol, 1972, 23: 437-464
[25]Kato T. Effect of spikelet removal on the grain filling of Akenohoshi, a rice cultivar with numerous spikelets in a panicle. J Agric Sci, 2004, 142: 177-181
[26]Zhao B-H(赵步洪). Grain Filling Characteristics of Two-Line Hybrid Rice and Their Regulation Approaches. Ph. D. Dissertation of Yangzhou University, 2004 (in Chinese with English abstract)
[27]Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot, 2006, 57: 149-160
[28]Davies P J. Introduction. In: Davies P J ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! Dordrecht, the Netherlands: Kluwer Academic Publishers, 2004. pp 1-35
[29]Lee B T, Martin P, Bangerth F. Phytohormones levels in the florets of a single wheat spikelet during pre-anthesis development and relationships to grain set. J Exp Bot, 1988, 39: 927-933
[30]Ober E S, Setter T L, Madison J T, Thompson J F, Shapiro P S. Influence of water deficit on maize endosperm development. Enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol, 1991, 97: 154-164
[31]Saini H S, Sedgley M, Aspinall D. Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Aust J Plant Physiol, 1984, 11: 243-253
[32]Andersen M N, Asch F, Wu F, Jemsen C R, Naested H, Mogensen V O, Koch K E. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol, 2002, 130: 591-604
[33]Dembinska O, Lalonde S, Saini H S. Evidence against the regulation of grain set by spikelet abscisic acid levels in water-stressed wheat. Plant Physiol, 1992, 100: 1599-1602
[34]Yang J, Zhang J, Liu K, Wang Z, Liu L. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol, 2006, 271: 293-303
[35]Tao L-X(陶龙兴), Wang X(王熹), Huang X-L(黄效林). Effects of endogenous IAA on grain filling of hybrid rice. Chin J Rice Sci (中国水稻科学), 2003, 17(2): 149-155 (in Chinese with English abstract)
[36]Wang X(王熹), Tao L-X(陶龙兴), Xu R-S(徐仁胜), Tian S-L(田淑兰). Apical grain superiority in hybrid rice. Acta Agron Sin(作物学报), 2001, 27(6): 980-985 (in Chinese with English abstract)
[37]Duan J(段俊), Tian C-E(田长恩), Liang C-Y(梁承邺), Huang Y-W(黄毓文); Liu H-X(刘鸿先). Dynamic changes of endogenous plant hormones in rice grains in different parts of panicle at grain-filling stage. Acta Bot Sin (植物学报), 1999, 41(1): 75-79 (in Chinese with English abstract)
[38]Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 2000, 30: 261-270
[39]Morris R D, Blevins D G, Dietrich J T, Durly R C, Gelvin S B, Gray J, Hommes N G, Kaminek M, Mathews L J, Meilan R, Reinbott T M, Sagavendra-Soto L. Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust J Plant Physiol, 1993, 20: 621-637
[40]Brenner M L, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. In: Davies P J ed. Plant Hormones, Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer Academic Publishers, 1995. pp 649-670
[41]Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L. Correlation of cytokinin levels in the endosperm and roots with cell number division activity during endosperm development in rice. Ann Bot, 2002, 90: 369-377
[42]Finkelstein R R. The role of hormones during seed development and germination. In: Davies P J ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! Dordrecht, Netherlands: Kluwer Academic Publishers, 2004. pp 513-517
[43]Papadakis A K, Roubelakis-Angelakis K A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol, 2005, 220: 826-837
[44]Alcazar R, Marco F, Cuevas J C, Patron M, Ferrando A, Carrasco P, Tiburcio A F, Altabella T. Involvement of polyamines in plant response to abiotic stress. Biotech Lett, 2006, 28: 1867-1876
[45]Tomosugi M, Ichihara K, Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta, 2006, 223: 349-358
[46]Yang J, Cao Y, Zhang H, Liu L, Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137-149
[47]TanG-L(谈桂露), Zhang H(张耗), Fu J(付景), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Post-anthesis changes in concentrations of polyamines in superior and inferior spikelets in relation with grain filling of super rice. Acta Agron Sin (作物学报), 2009, 35(12): 2225-2233 (in Chinese with English abstract)
[48]Murata Y, Matsushima S. Rice. In: Evans L T ed. Crop Physiology. Cambridge: Cambridge University Press, 1975. pp 75-99
[49]Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833-839
[50]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 15-20
[51]Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629
[52]Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in source-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81
[53]Jeng T L, Wang C S, Chen C L, Sung J M. Effects of grain position on the panicle on starch biosynthetic enzyme activity in developing grains of rice cultivar Tainung 67 and its NaN3-induced mutant. J Agric Sci, 2003, 141: 303-311
[54]Yang J-C(杨建昌), Peng S-B(彭少兵), Gu S-L(顾世梁), Visperas R M, Zhu Q-S(朱庆森). Changes in activities of three enzymes associated with starch synthesis in rice grains during grain filling. Acta Agron Sin (作物学报), 2001, 27(2): 157-164 (in Chinese with English abstract)
[55]Duan M, Sun S S M. Profiling the expression of genes controlling rice grain quality. Plant Mol Biol, 2005, 59: 165-178
[56]Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): Comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46: 620-628
[57]Jeng T L, Wang C S, Tseng T H, Sung J M. Expression of granule-bound starch synthase in developing rice grain. J Sci Food Agric, 2007, 87: 2456-2463
[58]Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374
[59]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827-831
[60]Hirose T, Takano M, Terao T. Cell wall invertase in developing rice caryopsis: molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol, 2002, 43: 452-459
[61]Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants. International Rice Research Institute Paper Series, 1987, 125: 1-19
[62]Venkateswarlu B. Source-sink interrelationships in lowland rice. Plant Soil, 1976, 44: 575-586
[63]Jing Y-H(荆彦辉), Xu Z-J(徐正进). Research progress of rice vascular bundle characters. J Shenyang Agric Univ (沈阳农业大学学报), 2003, 34(6): 467-471 (in Chinese with English abstract)
[64]Ma J(马均), Zhou K-D(周开达), Ma W-P(马文波), Wang X-D(汪旭东), Min D-F(明东风), Yan Z-B(严志彬). The characteristics of vascular bundles in the first internode and grain filling of heavy panicle hybrid rice. Sci Agric Sin (中国农业科学), 2002, 35(5): 576-579 (in Chinese with English abstract)
[65]Huang S-M(黄升谋), Zou Y-B(邹应斌), Li S-Q(李淑清). Vascular bundles feature and physiology character of hybrid rice (Liangyoupeijiu). J Hunan Agric Univ (湖南农业大学学报), 2004, 30(1): 1-3 (in Chinese with English abstract)
[66]Huang S-M(黄升谋), Zou Y-B(邹应斌), Liu C-L(刘春林). Setting physiology of the superior and inferior grains of hybrid rice Liangyoupeijiu. Acta Agron Sin (作物学报), 2005, 31(1): 102-107 (in Chinese with English abstract)
[67]Li M-Y(李木英), Pan X-H(潘晓华). The anatomic characters of panicle and its relations to filled grain in two-line hybrid rice. Acta Agric Univ Jiangxiensis (江西农业大学学报), 2000, 22(2): 147-151 (in Chinese with English abstract)
[68]Deng Q-Y(邓启云),Ma G-H(马国辉). A preliminary study on the characters of bundle and its relation to the grain plumpness in intersubspecific hybrid rice. J Hubei Agric Coll (湖北农学院学报), 1992, 2(1): 1-5 (in Chinese with English abstract)
[69]Xiao D-X(肖德兴), Pan X-H(潘晓华), Shi Q-H(石庆华). A preliminary study on the vascular bundle characters and its relation to the filled-grain rate in two lines hybrid rice (F1). Acta Agric Univ Jiangxiensis (江西农业大学学报), 1993, 15(S2): 50-55 (in Chinese with English abstract)
[70]Wang Z-Q(王志琴), Yang J-C(杨建昌), Zhu Q-S(朱庆森), Zhang Z-J(张祖建), Lang Y-Z(郎有忠), Wang X-M(王学明). Reasons for poor grain plumpness in intersubspecific hybrid rice. Acta Agron Sin (作物学报), 1998, 24(6): 782-787 (in Chinese with English abstract)
[71]Teng S, Qian Q, Zeng D L, Kunihiro Y, Huang D N, Zhu L H. QTL analysis of rice peduncle vascular bundle system and panicle traits. Acta Bot Sin, 2002, 44(3): 301-306
[72]Peng S, Cassman KG, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559
[73]Yang J-C(杨建昌), Liu L-J(刘立军), Wang Z-Q(王志琴), Lang Y-Z(郎有忠), Zhu Q-S(朱庆森). Effects of flowering time of spikelets on endosperm development in rice and its physiological mechanism. Sci Agric Sin (中国农业科学), 1999, 32(3): 34-51 (in Chinese with English abstract)
[74]Yang J-C(杨建昌), Su B-L(苏宝林), Wang Z-Q(王志琴), Lang Y-Z(郎有忠), Zhu Q-S(朱庆森). Characteristics and physiology of grain-filling in inter-subspecific hybrid rice. Sci Agric Sin (中国农业科学), 1998, 31(1): 7-14 (in Chinese with English abstract)
[75]Yang J, Zhang W, Wang Z, Liu L, Zhu Q. Source-sink characteristics and the translocation of assimilates in new plant type and intersubspecific hybrid rice. Agric Sci China, 2002, 1(2):155-162
[76]Xie G-H(谢光辉), Yang J-C(杨建昌), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Grain filling characteristics of rice and their relationships to physiological activities of grains. Acta Agron Sin (作物学报), 2001, 27(5): 557-565 (in Chinese with English abstract)
[77]Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiol Biochem, 2009, 47: 195-204
[78]Yang J, Zhang J. Grain filling of cereals under soil drying. New Phytol, 2006, 169: 223-236
[79]Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal Changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315-323
[80]Yang J, Zhang J, Ye Y, Wang Z, Zhu Q, Liu L. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ, 2004, 27: 1055-1064
[81]Zhang Z, Xue Y, Wang Z, Yang J, Zhang J. The relationship of grain filling with abscisic acid and ethylene under non-flooded mulching cultivation. J Agric Sci, 2009, 147: 423-436
[82]Fageria N K. Plant tisuu test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plant Anal, 2003, 34: 259-270
[83]Fageria N K. Yield physiology of rice. J Plant Nutr, 2007, 30: 843-879
[84]Yang J, Zhang J. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177-3189
[85]Zhang H, Xue Y, Wang Z, Yang J, Zhang J. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40
[86]Zhang H, Chen T, Wang Z, Yang J, Zhang J. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J Exp Bot, 2010, 61: 3709-3717
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[10] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[11] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[12] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[13] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[14] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!