欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 40-47.doi: 10.3724/SP.J.1006.2011.00040

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

两个棉花ß-葡聚糖酶新基因的结构与表达特征分析

 董佳, 蔡彩平, 王立科, 赵亮, 张天真, 郭旺珍*   

  1. 南京农业大学 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2010-06-10 修回日期:2010-08-04 出版日期:2011-01-12 网络出版日期:2010-11-12
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z111),转基因生物新品种培育重大专项(2008ZX08009-003)和教育部111项目(B08025)资助。

Structure and Expression Analysis of Two Novel Genes Encoding β-glucanase in Cotton

DONG Jia,CAI Cai-Ping,WANG Li-Ke,ZHAO Liang,ZHANG Tian-Zhen,GUO Wang-Zhen*   

  1. National Key Laboratory of Crop Genetics & Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-06-10 Revised:2010-08-04 Published:2011-01-12 Published online:2010-11-12
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn

摘要: β-葡聚糖酶是一类能降解β-葡聚糖的水解酶。本研究分别通过电子克隆和棉纤维发育cDNA文库筛选法克隆到2个棉花β-葡聚糖酶新基因,内切-1,4-β-葡聚糖酶基因(GhEG,GenBank登录号为HM462003)和1,3-β-葡聚糖酶基因(GhGLU,GenBank登录号: HM462004)。GhEG全长ORF为1 581 bp,编码526个氨基酸残基。GhGLU全长ORF为1 410 bp,编码469个氨基酸残基。基因组水平分析表明,GhEG含5个内含子和6个外显子,而GhGLU无内含子,仅1个外显子。新克隆的2个基因在二倍体棉种非洲棉和雷蒙德氏棉中含1个拷贝,而在四倍体陆地棉和海岛棉中存在2个拷贝。通过开发SNP标记分别将GhEGGhGLU在四倍体中的一个拷贝定位在第19染色体和第4染色体上。Q-PCR表达分析表明,GhEG在根、茎、叶中表达水平很低,而在纤维伸长期优势表达,在15 DPA和20 DPA纤维中,该基因在海岛棉海7124中的转录本显著高于陆地棉TM-1。GhGLU在根、茎、叶及纤维发育不同时期均有表达,属于组成性表达基因,特别在根、纤维发育初始期和伸长后期优势表达,且表达水平在陆地棉TM-1和海岛棉海7124间也有显著差异。

关键词: 内切-1,4-β-葡聚糖酶, 1,3-β-葡聚糖酶, 结构, 表达

Abstract: The β-glucanase is a type of enzyme degrading β-glucan. Cloning and expression analysis of genes encoding β-glucanase can provide information in both gene resources and breeding utilization for improvement of cotton fiber quality. The two novel genes encoding β-glucanase, designated as GhEG (GenBank accession No: HM462003) and GhGLU (GenBank accession No: HM462004), were obtained by sillico cloning and cDNA library screening, respectively. GhEG contained an open reading frame of 1 581 bp that encoded a polypeptide of 526 amino acids, and GhGLU contained an open reading frame of 1 410 bp that encoded a polypeptide of 469 amino acids. The genome sequence indicated that GhEG has five introns and six exons, while GhGLU has no intron and only one exon. The two genes all had one copy in diploid cotton species G. herbaceum and G. raimondii and two copies in tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai 7124, respectively. One of GhEG or GhGLU homoelogs in tetraploid was located on chromosome 19 and chromosome 4 by developing SNP marker, respectively. Q-PCR expression analysis showed that GhEG was expressed specifically in fiber elongation and had obvious difference between TM-1 and Hai7124 at the fiber elongation period of 15 DPA and 20 DPA, almost no transcripts were detected in root, stem and leaf. GhGLU was expressed in all tissues, dominantly in root, at fiber initiation and fiber late elongation phase, with obvious difference between TM-1 and Hai7124.

Key words: GhEG, GhGLU, Structure, Expression

[1]Won G Y, Fincher G B, Maclachlan G A. Cellulases can enhance beta-glucansynthesis. Science, 1977, 195: 679–681
[2]Hayashi T, Wong Y S, Maclachlan G. Pea Xyloglucan and cellulose: II. hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol, 1984, 75: 605–610
[3]Lashbroo K C C, Bennet T A B. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell, 1994, 6: 1485–1493
[4]Catalac C, Rose J K C, Bennett A B. Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endo-transglycosylase in expanding tomato hypocotyls. Plant J, 1997, 12: 417–426
[5]Chang M M, Culley D E, Hadwiger L A. Nucleotidesequence of a pea (Pisum sativum L.) β-1,3-glucanase gene. Plant Physiol, 1993, 101: 1121–1122
[6]Abeles F B, Bosshart R P, Forrence L E. Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol, 1971, 47: 129–134
[7]Basra A S, Malik C P. Development of cotton fiber. Int Rev Cytol, 1984, 89: 65–113
[8]Turley R B, Ferguson D L. Changes of ovule proteins during early fiber developing in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J Plant Physiol, 1996, 149: 695–702
[9]Orford S J, Timmis J N. Abundant mRNAs specific to the developing cotton fiber. Theor Appl Genet, 1997, 94: 909–918
[10]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366
[11]Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol, 1997, 38: 375–378
[12]McFadden H G, Chapple R, Feyter D E, Dennis E. Expression of pathogenesis-related genes in cotton stem in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 2001, 58: 119–131
[13]Gao Y-L(高玉龙), Guo W-Z(郭旺珍), Wang L(王磊), Zhang T-Z(张天真). Cloning and characterization of oneβ-1,3-glucanase gene cDNA in cotton (Gossypium barbadense L.). Acta Agron Sin (作物学报), 2007, 33(8): 1310–1315 (in Chinese with English abstract)
[14]Cronn R C, Small R L, Haselkorn T, Wendel J F. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast gene. Am J Bot, 2002, 89: 707–725
[15]Van Ooijen J W, Voorrips R E. JoinMapR Version 3.0: Software for the calculation of genetic linkage maps. 2001, CPRO-DLO, Wageningen
[16]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map in tetraploid cotton reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527–541
[17]Wu Y-Y(武耀廷), Liu J-Y(刘进元). A modified hot borate method for efficient isolation of total RNA from different cotton tissues. Cotton Sci (棉花学报), 2004, 16(2): 67–71 (in Chinese with English abstract)
[18]Jiang J-X(蒋建雄), Zhang T-Z(张天真). Tissues with CTAB-acidic phenolic method. Cotton Sci (棉花学报), 2003, 15(3): 166–167 (in Chinese with English abstract)
[19]Paterson A H, Brubaker C L, Jonathan F. Rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127
[20]Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real­time quantitatve PCR and the 2(­delta delta C(T)) method. Methods, 2001, 25: 402–408
[21]Brummell D A, Catala C. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci USA, 1997, 94: 4794–4799
[22]Shani Z, Dekel M. Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol, 1997, 34: 837–842
[23]Palomer X, Llop T I, Vendrell M. Antisense down-regulation of strawberry endo-β-(1,4)-glucanase genes does not prevent fruit softening during ripening. Plant Sci, 2006, 5: 640–646
[24]Harpster M H, Dawson D M, Nevins D J, Dunsmuir P, Brummell D A. Constitutive over-expression of a ripening-related pepper endo-1,4-β-glucanase in transgenic tomato fruit does not increase xyloglucan depolymerization or fruit softening. Plant Mol Biol, 2002, 50: 35–369
[25]Morohashi Y, Matsushima H. Development of β-1,3-glucanase activity in germinated tomato seeds. J Exp Bot, 2000, 51: 1381–1387
[26]Buchner P, Rochat C, Wuillème S. Characterization of a tissue-specific and developmentally regulated-1,3-glucanase gene in pea (Pisum sativum). Plant Mol Biol, 2002, 49: 171–186
[27]Akiyama T, Pillai M A, Sentoku N. Cloning, characterization and expression of OsGLN2, a rice endo-1,3-β-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta, 2004, 220: 129–139
[28]Ruan Y L, Xu S M, White R, Furbank R T. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol, 2004, 136: 4104–4113
[29]McFadden H G, Chapple R, Feyter D E. Expression of pathogenesis-related genes in cotton stem in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 2001, 58: 119–131
[30]Jongedijk E, Tigelaar H. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 1995, 85: 173–180
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[7] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[8] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[9] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[10] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[14] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!