欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2073-2083.doi: 10.3724/SP.J.1006.2010.02073

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个玉米类ABC1基因ZmABC1-10的克隆及其对镉等非生物胁迫的应答

高清松,杨泽峰,周勇,张丹,闫成海,梁国华,徐辰武*   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 教育部植物功能基因组学重点实验室, 江苏扬州 225009
  • 收稿日期:2010-05-18 修回日期:2010-08-01 出版日期:2010-12-12 网络出版日期:2010-10-14
  • 通讯作者: XU Chen-Wu, E-mail: qtls@yzu.edu.cn, Tel: +86-514-87979358; Fax: +86-514-87996817

Cloning of an ABC1-like Gene ZmABC1-10 and Its Responses to Cadmium and Other Abiotic Stresses in Maize (Zea mays L.)

GAO Qing-Song,YANG Ze-Feng,ZHOU Yong,ZHANG Dan,YAN Cheng-Hai,LIANG Guo-Hua,XU Chen-Wu*   

  1. Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
  • Received:2010-05-18 Revised:2010-08-01 Published:2010-12-12 Published online:2010-10-14
  • Contact: XU Chen-Wu, E-mail: qtls@yzu.edu.cn, Tel: +86-514-87979358; Fax: +86-514-87996817
  • Supported by:

    This study was supported by the National Basic Research Program of China (2006CB101700), the National Natural Science Foundation (30971846) and the Vital Project of Natural Science in Universities of Jiangsu Province, China (09KJA210002).

摘要: 镉是一种非必需的重金属元素, 对动植物有严重毒害作用。几个与ABC1(activity of the bc1 complex)家族有关的基因参与植物镉胁迫的应答。本研究从玉米中克隆并鉴定了一个类ABC1基因, 命名为ZmABC1-10。该基因cDNA全长2 519 bp, 包含一个2 250 bp的开放阅读框, 编码一个预测的叶绿体膜蛋白。启动子顺式元件扫描发现该基因含有大量的非生物胁迫、光以及植物激素应答元件。表达模式分析表明, 该基因主要在叶片、茎秆等绿色组织中表达。镉处理实验表明, 该基因能够被诱导并且受植物发育时期的调控。除镉之外, 该基因还受多种非生物因素包括ABA、H2O2、干旱和黑暗的共同调控。此外, 本研究利用基因组序列信息共鉴定出19个玉米ABC1基因。对植物界8个代表性物种中148个ABC1蛋白进行系统发育分析表明, 在长期进化过程中植物ABC1蛋白已经发生了分化; 物种特异性扩张是植物中该家族进化的主要动力。这些结果表明ZmAbc1-10是一个镉应答因子并且可能在植物对非生物胁迫的适应中发挥重要作用。

关键词: 玉米, 类ABC1基因, 克隆, 镉应答, 非生物胁迫

Abstract: Cadmium is a non-essential heavy metal that is extremely toxic to plants and animals. Previous studies have shown that several proteins associated with the Activity of the bc1 complex (ABC1) protein family participate in plant responses to cadmium. Here we presented the cloning and characterization of an ABC1-like gene, ZmABC1-10, from maize (Zea mays L.). The full-length 2 519 bp cDNA of maize ABC1-10 gene contained an open reading frame (ORF) of 2 250 bp encoding a membrane-binding protein with a predicted localization in the chloroplast. A promoter scan detected numerous cis-elements implicated in abiotic stress, light, and phytohormone responses. Expression profile analysis indicated most expression of this gene occurred in green tissues. Cadmium treatment revealed that expression of this gene could be induced and was correlated with plant development. In addition to cadmium, ZmABC1-10 expression was also affected by a broad range of abiotic factors, such as ABA, H2O2, drought and darkness. A total of 19 members of maize ABC1 family were identified with the B73 maize genomic sequence. Phylogenetic analysis using 148 ABC1 proteins from 8 representative species of plant kingdom revealed that divergence occurred and species-specific expansion contributed to the evolution of this family in plants. Collectively, our data suggest that ZmAbc1-10 is a cadmium- esponsive factor and may play potential roles in the plant adaption to diverse abiotic stresses.

Key words: Maize, ABC1-like gene, Cloning, Cadmium response, Abiotic stress

[1]DalCorso G, Farinati S, Maistri S, Furini A. How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol, 2008, 50: 1268–1280
[2]Buchet J P, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F, Ducoffre G, de Plaen P, Staessen J, Amery A, Lijnen P, Thijs L, Rondia D, Sartor F, Saint Remy A, Nick L. Renal effects of cadmium body burden of the general population. Lancet, 1990, 336: 699–702
[3]Sanità di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot, 1999, 41: 105–130
[4]Sandalio L M, Dalurzo H C, Gómez M, Romero-Puertas M C, del Río L A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot, 2001, 52: 2115–2126
[5]Brahim S, Ann C, Karen S, Frank Van B, Nele H, Henk S, Jaco V. Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant, 2007, 129: 519–528
[6]Romero-Puertas M C, Palma J M, Gómez M, del Río L A, Sandalio L M. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ, 2002, 25: 677–686
[7]Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212: 475–486
[8]Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 2002, 53: 159–182
[9]Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol, 2009, 149: 894–904
[10]Kim D Y, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J, 2007, 50: 207–218
[11]Jonak C, Nakagami H, Hirt H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol, 2004, 136: 3276–3283
[12]Pitzschke A, Hirt H. Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol, 2006, 141: 351–356
[13]Maksymiec W. Signaling responses in plants to heavy metal stress. Acta Physiol Plant, 2007, 29: 177–187
[14]Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S, Martinoia E, Bovet L. AtOSA1, a member of the Abc1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiol, 2008, 147: 719–731
[15]Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A. Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot, 2005, 56: 3017–3027
[16]Leonard C J, Aravind L, Koonin E V. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res, 1998, 8: 1038–1047
[17]Do T Q, Hsu A Y, Jonassen T, Lee P T, Clarke C F. A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants. J Biol Chem, 2001, 276: 18161–18168
[18]Hsieh E J, Dinoso J B, Clarke C F. A tRNATRP gene mediates the suppression of cbs2-223 previously attributed to ABC1/COQ8. Biochem Biophys Res Commun, 2004, 317: 648–653
[19]Macinga D R, Cook G M, Poole R K, Rather P N. Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2'-N-acetyltransferase in P. stuartii. J Bacteriol, 1998, 180: 128–135
[20]Tauche A, Krause-Buchholz U, Rodel G. Ubiquinone biosynthesis in Saccharomyces cerevisiae: the molecular organization of O-methylase Coq3p depends on Abc1p/Coq8p. FEMS Yeast Res, 2008, 8: 1263–1275
[21]Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny H O, Munnich A, Rotig A. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet, 2008, 82: 623–630
[22]Trumpower B L. New concepts on the role of ubiquinone in the mitochondrial respiratory chain. J Bioenerg Biomembr, 1981, 13: 1–24
[23]Villalba J M, Navas P. Plasma membrane redox system in the control of stress-induced apoptosis. Antioxid Redox Signal, 2000, 2: 213–230
[24]Ernster L, Forsmark-Andree P. Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig, 1993, 71: S60–S65
[25]Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Yi Chuan, 2007, 29: 1023–1026
[26]Zdobnov E M, Apweiler R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 2001, 17: 847–848
[27]Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA, 1998, 95: 5857–5864
[28]Letunic I, Doerks T, Bork P. SMART 6: recent updates and new developments. Nucleic Acids Res, 2009, 37: D229–232
[29]Finn R D, Mistry J, Tate J, Coggill P, Heger A, Pollington J E, Gavin O L, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer E L, Eddy S R, Bateman A. The Pfam protein families database. Nucleic Acids Res, 2010, 38: D211–222
[30]Krogh A, Larsson B, von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, 305: 567–580
[31]Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl Acids Res, 1999, 27: 297–300
[32]Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000, 300: 1005–1016
[33]Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng, 1997, 10: 1–6 ......
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!