作物学报 ›› 2011, Vol. 37 ›› Issue (02): 331-338.doi: 10.3724/SP.J.1006.2011.00331
陆大雷,郭换粉,董策,陆卫平*
LU Da-Lei,GUO Huan-Fen,DONG Ce,LU Wei-Ping*
摘要: 以普通玉米、甜玉米和糯玉米为材料,研究了淀粉糊化特性、热力学特性和颗粒分布等在果穗不同部位(基部、中部和顶部)间的变异情况。结果表明,甜玉米淀粉的糊化特征值各项指标均为顶部籽粒较高;普通玉米淀粉的峰值黏度和崩解值亦为顶部籽粒较高,回复值在各部位间无显著差异。糯玉米淀粉崩解值为顶部籽粒最高,峰值黏度和回复值在各部位间相对稳定。甜玉米淀粉转变温度(起始温度、峰值温度和终值温度)均为基部籽粒较高,而普通玉米在各部位间差异较小,糯玉米以中部籽粒较高,热焓值在3个类型玉米各部位间变化不一。淀粉颗粒体积均呈双峰分布,>17 μm的体积比例以顶部籽粒最低,中部籽粒最高,<17 μm的体积比例以顶部籽粒最高,中部籽粒最低。碘结合力在糯玉米不同部位间差异较小,而甜玉米和普通玉米以顶部籽粒最低。相关分析表明,淀粉颗粒体积分布和碘结合力等指标与糊化和热力学特征值存在一定的相关关系,表明果穗不同部位淀粉糊化和热力学特性的差异主要由颗粒分布及淀粉链长分布变化所致。
[1]Jobling S. Improving starch for food and industrial applications. Plant Biol, 2004, 7: 210–218 [2]Singh N, Inouchi N, Nishinari K. Structure, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloid, 2006, 20: 923–935 [3]Perera C, Lu J, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 corn starch with normal and waxy cultivars. Cereal Chem, 2001, 78: 249–256 [4]Ou-Lee T M, Setter T L. Enzyme activities of starch and sucrose pathways and growth of apical and basal maize kernels. Plant Physiol, 1985, 79: 848–851 [5]Ou-Lee T M, Setter T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol, 1985, 79: 852–855 [6]Shen L-X(申丽霞), Wang P(王璞), Zhang H-F(张红芳), Yi Z-X(易镇邪). Effect of nitrogen supply on grain filling at different ear position in summer maize. Acta Agron Sin (作物学报), 2005, 31(4): 532–534 (in Chinese with English abstract) [7]Shen L-X(申丽霞), Wei Y-P(魏亚萍), Wang P(王璞), Yi Z-X(易镇邪), Zhang H-F(张红芳), Lan L-W(兰林旺). Effect of nitrogen supply on early kernel development and yield in summer maize (Zea mays L.). Acta Agron Sin (作物学报), 2006, 32(11): 1746–1751 (in Chinese with English abstract) [8]Fergason V L, Helm J L, Zuber M S. Effect of kernel position on amylose starch content, distribution of amylose within corn endosperm (Zea mays L.). Crop Sci, 1966, 6: 273–275 [9]Jellum M D. Fatty acid composition of corn (Zea mays L.) oil as influenced by kernel position on ear. Crop Sci, 1966, 7: 593–595 [10]Sandhu K S, Singh N, Malhi N S. Physicochemical and thermal properties of starches separated from corn produced from crosses of two germ pools. Food Chem, 2005, 89: 541–548 [11]Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohyd Polym, 2004, 57: 89–96 [12]Lu D-L(陆大雷), Wang D-C(王德成), Jin L-Q(景立权), Han Q(韩晴), Guo H-F(郭换粉), Zhao J-R(赵久然), Lu W-P(陆卫平). Starch gelatinization and retrogradation properties under different basic fertilizer regimes and nitrogen topdressing at jointing stage of waxy maize. Acta Agron Sin (作物学报), 2009, 35(5): 867–874 (in Chinese with English abstract) [13]Lu D-L(陆大雷), Lu W-P(陆卫平), Zhao J-R(赵久然), Wang D-C(王德成). Effects of basic fertilizer treatments and nitrogen topdressing at jointing stage on starch RVA characteristics of waxy maize. Acta Agron Sin (作物学报), 2008, 34(7): 1253–1258 (in Chinese with English abstract) [14]Massaux C, Sindic M, Lenartz J, Sinnaeve G, Bodson B, Falisse A, Dardenne P, Deroanne C. Variations in physicochemical and functional properties of starches extracted from European soft wheat (Triticum aestivum L.): the importance to preserve the varietal identity. Carbohyd Polym, 2008, 71: 32–41 [15]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generation of new corn lines. Carbohyd Polym, 2003, 54: 305–319 [16]Chang Y, Lin J, Chang S. Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocolloid, 2006, 20: 332–339 [17]Peterson D G, Fulcher R G. Variation in Minnsota HRS wheats: starch granule size distribution. Food Res Int, 2001, 34: 357–363 [18]Lu T, Chen J, Lin C, Chang Y. Properties of starches from cocoyam (Xanthosoma sagittifolium) tubers planted in different seasons. Food Chem, 2005, 91: 69–77 [19]Zaidul I S M, Yamauchi H, Takigawa S, Matsuura-Endo C, Suzuki T, Noda T. Correlation between the compositional and pasting properties of various potato starches. Food Chem, 2007, 105: 164–172 [20]Singh J, McCarthy O J, Singh H. Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohyd Polym, 2006, 64: 569–581 [21]Vermeylena R, Goderis B, Reynaers H, Delcour A. Gelatinisation related structural aspects of small and large wheat starch granules. Carbohyd Polym, 2005, 62: 170–181 [22]Noda T, Takigawa S, Matsuura-Endo C, Kim S, Hashimoto N, Yamauchi H, Hanashiro I, Takeda Y. Physicochemical properties and amylopectin structures of large, small, and extremely small potato starch granules. Carbohyd Polym, 2005, 60: 245–251 [23]Fiedorowicz M, Rebilas K. Physicochemical properties of waxy corn starch and corn amylopectin illuminated with linearly polarized visible light. Carbohyd Polym, 2002, 50: 315–319 [24]Zhang G-F(张国发), Hou P-F(侯朋福). Effect of temperature during grain filling stage on rice starch RVA characteristics of different kernel positions. J Daqing Norm Univ (大庆师范学院学报), 2008, 28(5): 121–123 (in Chinese) [25]Gambin B L, Borras L. Sorghum kernel weight: Growth patterns from different positions within the panicle. Crop Sci, 2005, 45: 553–561 [26]Calderini D F, Ortiz-Monasterio I. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci, 2003, 43: 141–151 [27]Singh M, Sandhu K S, Kaur M. Physicochemical properties including granular morphology, amylose content, swelling and solubility, thermal and pasting properties of starches from normal, waxy, high amylose and sugary corn. Prog Food Biopolymer Res, 2005, 1: 43–54 [28]Sandhu K S, Singh N, Lim S. A comparison of native and acid thinned normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. LWT Food Sci Technol, 2007, 40: 1527–1536 [29]Kuakpetoon D, Wang Y. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohyd Res, 2006, 341:1896–1915 |
[1] | 李莎莎,马耕,刘卫星,康娟,陈雨露,胡阳阳,张盼盼,王晨阳. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响[J]. 作物学报, 2018, 44(7): 1067-1076. |
[2] | 刘希伟,张敏,李勇,张玉春,宋霄君,赵城,蔡瑞国. 花后不同强度遮光对糯小麦和非糯小麦淀粉组分和理化特性的影响[J]. 作物学报, 2017, 43(05): 777-786. |
[3] | 徐云姬,李银银,钱希旸,王志琴,杨建昌. 三种禾谷类作物强、弱势粒淀粉粒形态与粒度分布的比较[J]. 作物学报, 2016, 42(01): 70-81. |
[4] | 于海霞,田纪春. 小麦淀粉糊化特性与DArT标记的关联分析[J]. 作物学报, 2012, 38(11): 1997-2006. |
[5] | 谭秀山,毕建杰,王金花,叶宝兴. 冬小麦不同穗位籽粒淀粉粒差异及其与粒重的相关性[J]. 作物学报, 2012, 38(10): 1920-1929. |
[6] | 孙健, 岳瑞雪, 钮福祥, 徐飞, 朱红. 淀粉型甘薯品种直链淀粉含量、糊化特性和乙醇发酵特性的关系[J]. 作物学报, 2012, 38(03): 479-486. |
[7] | 蔡铁, 王振林, 尹燕枰, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 倪英丽, 杨卫兵. 氮硫肥配施对小麦籽粒谷蛋白大聚合体含量及粒度分布的影响[J]. 作物学报, 2011, 37(06): 1060-1068. |
[8] | 陆大雷, 郭换粉, 董策, 陆卫平. 生长季节对糯玉米淀粉粒分布和热力学特性的影响[J]. 作物学报, 2010, 36(11): 1998-2003. |
[9] | 田益华,张传辉,蔡剑,周琴,姜东,戴廷波,荆奇,曹卫星. 小麦籽粒A-型和B-型淀粉粒的理化特性[J]. 作物学报, 2009, 35(9): 1755-1758. |
[10] | 张平平,马鸿翔,姚金保,何中虎. Glu-1位点等位变异及表达量对麦谷蛋白聚合体粒度分布的影响[J]. 作物学报, 2009, 35(9): 1606-1612. |
[11] | 陆大雷;王德成;赵久然;陆卫平. 生长秀节对糯玉米淀粉晶体结构和糊化特性的影响[J]. 作物学报, 2009, 35(3): 499-505. |
[12] | 戴忠民;尹燕枰;张敏;李文阳;闫素辉;蔡瑞国;王振林. 旱作和灌溉条件下小麦籽粒淀粉粒粒度的分布特征[J]. 作物学报, 2008, 34(05): 795-802. |
[13] | 戴忠民;王振林;张敏;李文阳;闫素辉;蔡瑞国;尹燕枰. 不同品质类型小麦籽粒淀粉粒度的分布特征[J]. 作物学报, 2008, 34(03): 465-470. |
[14] | 张艳霞;丁艳锋;李刚华;王强盛;黄丕生;王绍华. 直链淀粉含量不同的稻米淀粉结构、糊化特性研究[J]. 作物学报, 2007, 33(07): 1201-1205. |
[15] | 穆培源;何中虎;徐兆华;王德森;张艳;夏先春. CIMMYT普通小麦品系Waxy蛋白类型及淀粉糊化特性研究[J]. 作物学报, 2006, 32(07): 1071-1075. |
|