欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1060-1068.doi: 10.3724/SP.J.1006.2011.01060

• 耕作栽培·生理生化 • 上一篇    下一篇

氮硫肥配施对小麦籽粒谷蛋白大聚合体含量及粒度分布的影响

蔡铁,王振林*,尹燕枰,李勇,陈晓光,王平,陈二影,郭俊祥,倪英丽,杨卫兵   

  1. 山东农业大学作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2010-11-15 修回日期:2011-03-08 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 王振林, E-mail: zlwang@sdau.edu.cn, zlwangsd@sina.com, Tel: 0538-8241359
  • 基金资助:

    本研究由国家自然科学基金项目(30871477), 国家重点基础研究发展计划(973计划)项目(2009CB118602)和国家公益性行业(农业)科研专项(200803037)资助。

Combined Effects of Nitrogen and Sulphur Fertilization on Content and Size Distribution of Glutenin Macropolymer in Wheat Grain

CAI Tie,WANG Zhen-Lin*,YIN Yan-Ping,LI Yong,CHEN Xiao-Guang,WANG Ping,CHEN Er-Ying,GUO Jun-Xiang,NI Ying-Li,YANG Wei-Bing   

  1. National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
  • Received:2010-11-15 Revised:2011-03-08 Published:2011-06-12 Published online:2011-04-12
  • Contact: 王振林, E-mail: zlwang@sdau.edu.cn, zlwangsd@sina.com, Tel: 0538-8241359

摘要: 以优质小麦品种山农15为材料,研究了氮硫肥配施对小麦籽粒谷蛋白大聚合体(GMP)含量、高分子量谷蛋白亚基(HMW-GS)含量、低分子量谷蛋白亚基(LMW-GS)含量和谷蛋白大聚合体(GMP)粒度分布的调控效应。结果表明,在一定范围内,增施氮肥可提高籽粒GMP含量、高分子量谷蛋白亚基(HMW-GS)含量和低分子量谷蛋白亚基(LMW-GS)含量。增施硫肥对籽粒GMP含量无显著影响,但降低了HMW-GS含量和D区LMW-GS含量,提高了B区和C区LMW-GS含量。增施氮肥和硫肥均降低小粒径(d < 12 µm)GMP颗粒体积和表面积百分比,提高大粒径(d ≥ 12 µm) GMP颗粒体积百分比和表面积百分比,但对GMP颗粒数目百分比无显著影响。相关性分析显示,C区LMW-GS含量与小粒径GMP颗粒体积百分和表面积百分比均呈显著负相关。说明增施氮肥能改变籽粒GMP的绝对含量,增施硫肥却改变籽粒GMP亚基的相对含量。増施氮肥和硫肥对大粒径GMP颗粒的体积及表面积分布均有正向效应;LMW-GS,特别是C区LMW-GS在大粒径GMP颗粒形成中起重要作用。

关键词: 小麦, 氮肥, 硫肥, HMW-GS, LMW-GS, 谷蛋白大聚合体(GMP)粒度分布

Abstract: The content and size distribution of glutenin macropolymer (GMP) play key roles in grain quality of wheat (Triticum aestivum L.). The aims of this study were to analyse the relationship between the content and size distribution of GMP and evaluate combined effects of nitrogen and sulphur fertilization on the content and size distribution of GMP in wheat grain. In the study, Shannong 15 was used in a field experiment with three nitrogen (N) application levels (120, 240, and 360 kg ha−1) and three sulphur (S) application levels (0, 60, and 90 kg ha−1). HMW-GS and LMW-GS were firstly separated using the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and each of the subunits was then extracted before quantitative measurement by colorimetric analysis. The result showed that, in certain ranges, contents of GMP, HMW-GS, and LMW-GS were significantly increased with more application of nitrogen fertilizes. The increasing application of sulphur showed no significant effect on GMP content, but reduced contents of HMW-GS and D-LMW-GS and promoted contents of B-LMW-GS and C-LMW-GS. The content of small GMP particle (diameter less than 12 μm) was significantly reduced with the increase of nitrogen and sulphur fertilization, and the content of large GMP particle (diameter no less than 12 μm), tended to increase with the increase of nitrogen application and sulphur application. However, the distribution of GMP particle number was not affected by the nitrogen and sulphur treatments. According to correlation analysis, C-LMW-GS content was negatively correlated with the content of small GMP particle. These results suggested that increasing nitrogen application had the effect on the absolute content of GMP, while increasing sulphur application affected relative content of GMP. Nitrogen and sulphur fertilization have positive modulation on the content of large GMP particle, and C-LMW-GSplays an important role in the development of large GMP particle.

Key words: Wheat, Nitrogen fertilizer, Sulphur fertilizer, HMW-GS, LMW-GS, Glutenin macropolymer size distribution

[1]Don C, Lichtendonk W J, Plijter J J, Hamer R J. Understanding the link between GMP and dough: from glutenin particle in flour towards developed dough. J Cereal Sci, 2003, 38: 157−165
[2]Cornish G B, Bekes F, Allen H M, Allen H M, Martin D J. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust J Agric Res, 2001, 52: 1339−1348
[3]Gupta R B, Khan K, MacRitchie, F. Biochemical basis of flour properties in bread wheat: effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23−41
[4]Steffolani M E, Perez G T, Ribotta P D, Puppo M C, Leon A E. Effect of transglutaminase on properties of glutenin macropolymerand dough rheology. J Cereal Sci, 2008, 85: 39−43
[5]Nagamine T, Kai Y, Takayama T, Yanagisawa T, Taya S. Allelic variation at the Glu-1 and Glu-3 loci in southern Japanese wheats, and its effects on gluten properties. J Cereal Sci, 2000, 32: 129−135
[6]Metakovsky E V, Wrigley C W, Bekes F, Gupta R B, Metakovskii E V. Gluten polypeptides as useful genetic markers of dough quality in Australian wheat. Aust J Agric Res, 1990, 41: 289−306
[7]Don C, Lichtendonk W, Plijter J J, Hamer R J. Glutenin macropolymer: a gel formed by gluten in particles. J Cereal Sci, 2003, 37: 1−7
[8]Don C, Lookhart G, Naeem H, MacRitchie F, Hamer R J. Heat stress and genotype affect the gluten in particles of the gluten in macropolymer-gel fraction. J Cereal Sci, 2005, 42: 69−80
[9]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affects the properties of glutenin particles in GMP and thus flour quality. J Cereal Sic, 2006, 44: 127−130
[10]Sun H(孙辉), Yao D-N(姚大年), Li B-Y(李保云), Liu G-T(刘广田), Zhang S-Z(张树榛). Correlation between content of glutenin macropolymer (GMP) in wheat and baking quality. Chin Cereals Oils Assoc (中国粮油学报), 1998, 13(6): 13−16 (in Chinese with English abstract)
[11]Zhu J, Khan K. Characterization of glutenin protein fractions from sequential extraction of hard red spring wheats of different bread-making quality. Cereal Chem, 2004, 81: 681−685
[12]Sun H(孙辉), Yao D-N(姚大年), Li B-Y(李保云), Liu G-T(刘广田), Zhang S-Z(张树榛). Effects of genetic and environmental factors on the content of glutenin macropolymer. J Triticeae Crops (麦类作物学报), 2000, 20(2): 23−27 (in Chinese with English abstract)
[13]Weegels P L, Hamer R J, Scholfield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23: 1−18
[14]Popineau Y, Cornec M, Lefebvre J, Marchylo B. Influence of high molecular glutenin subunits on glutenin polymers and rheological properties of near-isogenic lines of wheat Sicco. J Cereal Sci, 1994, 19: 231−241
[15]Zhu J B, Khan K, Huang S, O’Brien L. Allelic variation at Glu-D1 locus for high molecular weight (HMW) glutenin subunits: quantification by multistacking SDS-PAGE of wheat grow under nitrogen fertilization. Cereal Chem, 1999, 76: 915−919
[16]Yue H-W(岳鸿伟), Qin X-D(秦晓东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星), Jiang D(姜东). Effects of nitrogen rate on accumulations of HMW-GS and GMP in wheat grain. Acta Agron Sin (作物学报), 2006, 32(10): 1678−1683 (in Chinese with English abstract)
[17]Byers M, Bolton J. Effects of nitrogen and sulphur fertilizers on the yield N and S content and amino acid composition of the grain of spring wheat. J Sci Food Agric, 1979, 30: 251−263
[18]Wrigley C W, Du Cros D L, Archer M J, Downie P G, Roxburgh C M. The sulfur content of wheat endosperm proteins and its relevance to grain quality. Aust J Plant Physiol, 1980, 7: 755−766
[19]Wrigley C W, Du Cros D L, Fullington J G, Kasarda D D. Changes in polypeptide composition and grain quality due to sulfur deficiency in wheat. J Cereal Sci, 1984, 2: 15−24
[20]Zhao F J, Salmon S E, Withers P J A, Monaghan J M, Evans E J, Shewry P R, McGrath S P. Variation in the breadmaking quality and rheological properties of wheat in relation to sulphur nutrition under field conditions. J Cereal Sci, 1999, 30: 19−31
[21]Liang R-Q(梁荣奇), Zhang Y-R(张义荣), You M-S(尤明山), Mao S-F(毛善锋), Sun J-M(宋建民), Liu G-T(刘广田). Multi-stacking SDS-PAGE for wheat glutenin polymer and its relation to bread-making quality. Acta Agron Sin (作物学报), 2002, 28(5): 609−614 (in Chinese with English abstract)
[22]Cui Z-Q(崔志青), He D-X(贺德先), Cai T(蔡铁), Wang C-Y(王成雨), Wang G-C(王广昌), Meng F-Y(孟范玉), Han Z-J(韩占江), Li N-N(李娜娜), Wang Z-L(王振林). Effects of spraying ABA on glutenin fraction content and GMP size distribution in wheat grain. Sci Agric Sin (中国农业科学), 2010, 43(12): 2595−2602 (in Chinese with English abstract)
[23]Liang T-B (梁太波), Yin Y-P(尹燕枰), Cai R-G(蔡瑞国), Yan S-H(闫素辉), Li W-Y(李文阳), Geng Q-H(耿庆辉), Wang P(王平), Wu Y-H(邬云海), Li Y(李勇), Wang Z-L(王振林). HMW-GS accumulation and GMP size distribution in grains of Shannong 12 grown in different soil conditions. Acta Agron Sin (作物学报), 2008, 34(12): 2160−2167 (in Chinese with English abstract)
[24]Ni Y-L (倪英丽), Wang Z-L(王振林), Li W-Y(李文阳), Yan S-H(闫素辉), Yin Y-P(尹燕枰), Li Y(李勇), Wang P(王平), Chen X-G(陈晓光). Effects of phosphorus fertilizer on accumulation of high molecular weight glutenin subunits and glutenin macropolymer size distribution in wheat grain. Acta Agron Sin (作物学报), 2010, 36(6): 1055−1060 (in Chinese with English abstract)
[25]Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and repolymerisation of wheat glutenin during dough processing: I. Relationships between glutenin macropolymer content and quality parameters. J Cereal Sci, 1996, 23: 103−111
[26]Don C, Lichtendonk W J, Plijter J J, Vliet T, Hamer R J. The effect of mixing on glutenin particle properties: aggregation factors that affect gluten function in dough. J Cereal Sci, 2005, 41: 69−83
[27]Zhu Y-J(朱云集), Shen X-S(沈学善), Li G-Q(李国强), Qu H-J(屈会娟), Guo T-C(郭天财), Dai T-B(戴廷波), Cao W-X(曹卫星). Effect of the combined application of sulfur and nitrogen fertilizers on yield and starch quality traits of soft-gluten wheat cultivar Yumai 50. J Triticeae Crops (麦类作物学报), 2007, 27(2): 271−275 (in Chinese with English abstract)
[28]Leustek T, Martin M N, Bick J A, Davies J D. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 141−165
[29]Leustek T, Saito K. Sulfate transport and assimilation in plants. Plant Physiol, 1999, 120: 637−644
[30]Koprivova A, Suter M, Opden Camp R, Brunold C, Kopriva S. Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol, 2000, 122: 737−746
[31]Stewart B A, Porter L K. Nitrogen sulfur relationships in wheat, corn and beans. Agron J, 1969, 61: 267−271
[32]Zhao S-P(赵首萍), Hu S-L(胡尚连), Li W-X(李文雄), Du J-Z(杜金哲). Effects of sulphur on grain protein content and storage protein content in spring wheat with different quality. Acta Agron Sin (作物学报), 2003, 29(6): 847−852 (in Chinese with English abstract)
[33]Zhu J B, Khan K. Characterization of nonnumeric and glutenin polymeric proteins of hard red spring wheats during grain development by multitasking SDS-PAGE and capillary zone electrophoresis. Cereal Chem, 1999, 76: 261−269
[34]Gupta R B, Batey I L, Mac Ritchie F. Relationship between protein composition and functional properties of wheat flour. Cereal Chem, 1992, 69: 125−131
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[10] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!