作物学报 ›› 2011, Vol. 37 ›› Issue (02): 216-223.doi: 10.3724/SP.J.1006.2011.00216
吴娟娟1,2,吴倩1,喻德跃1,*
WU Juan-Juan1,2,WU Qian1,YU De-Yue1,*
摘要: 利用RT-PCR、RACE和LA PCR相结合的方法,从大豆中克隆了GmAOS基因及其启动子序列(登录号:EU366252),GmAOS基因共1 789 bp碱基,等电点8.97,分子量58.3 kD,在3种不同抗性大豆材料中均有2个拷贝。生物信息学分析表明,GmAOS酶的N末端有典型叶绿体定位信号肽,基因序列上有多个丝氨酸、苏氨酸、酪氨酸的磷酸化位点。该研究克隆到ATG上游472个碱基的GmAOS基因启动子部分序列,其含有赤霉素的响应元件(TAACAA),可诱导性抗性基因响应元件(W box),细菌和盐诱导的响应元件(GAAAAA),茉莉酸诱导的响应元件(G box)。GmAOS能强烈响应茉莉酸的诱导,且在黄皮小青豆(高抗斜纹夜蛾)中表达量高于徐疃大豆,两种材料抗虫性的差异可能是由GmAOS基因受诱导后的表达量差异引起的,即GmAOS基因与作物抗虫性相关,可做为培育高诱导抗性材料的候选基因。
[1]Brash A R, Baertschi S W, Ingram C D, Harris T M. Isolation and characterization of natural allene oxides: unstable intermediates in tire metabolism of lipid hydriperoxides. Proc Natl Acad Sci USA, 1988, 85: 3382–3386 [2]Laudert D, Pfarmschmidt U, Lottspeich F, Holländer-Czytko H, Weiler E W. Cloning molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP74), the first enzyme of the octadecanoid pathway to jasmonatea. Plant Mol Biol, 1996, 31: 323–335 [3]Laudert D, Weiler E W. A11ene oxide symhase: a major control point in Arabidopsis thaliana octadecanoid signaling. Plant J, 1998, 15: 675–684 [4]Xu L(徐涛), Zhou Q(周强), Chen W(陈威). Effects of jasmonic acid signal transduction induced rice resistanceto to insect. Chin Sci Bull (科学通报), 2003, 48(13): 1442–1446 (in Chinese) [5]Sivasankar S, Sheldrick B, Rothstein S J. Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol, 2000, 122: 1335–1342 [6]Kongrit D, Jisaka M, Iwanaga C, Yokomichi H, Katsube T, Nishimura K, Nagaya T, Yokota K. Molecular cloning and functional expression of soybean allene oxide synthase. Biosci Biotechnol Biochem, 2007, 71: 491–498 [7]Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res, 1987, 15: 8125–8148 [8]Song W C, Funk C D, Brash A R. Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA, 1993, 90: 8519–8523 [9]Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C. Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seeding development. Plant J, 2000, 21: 199–213 [10]Howe G A, Lee G I, Itoh A, Li L, Derocher A E. Cytochrome P450-dependent metabolism of oxylipins in tomato: cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol, 2000, 123: 711–724 [11]Ziegler J, Keinänen M, Baldwin I T. Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuate. Phytochemistry, 2001, 58: 729–738 [12]Song W C, Funk C D, Brash A R. Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA, 1993, 90: 8519–8523 [13]Porter T D, Coon M J. Cytochrome P450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem, 1991, 266: 13469–13472 [14]Brash A R, Song W C. Structure-function features of flaxseed allene oxide synthase. Lipid Med Cell Signaling, 1995, 12: 275–282 [15]Farmer E E. Surfaee-to-air signals. Nature, 2001, 411: 854–856 [16]Ariumra G, Ozawa R. Herbivory induced volatiles elicit defence genes in lima bean leaves. Nature, 2000, 406: 512–514 [17]Wu J J, Wu Q, Wu Q J, Gai J Y, Yu D Y. Constitutive overexpression of AOS-like gene from soybean enhanced tolerance to insect attack in transgenic tobacco. Biotechnol Lett, 2008, 30: 1693–1698 [18]Berger S. Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta, 2001, 214: 497–504 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[3] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[4] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[5] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[7] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[8] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[9] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[10] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[11] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[12] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[13] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[14] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[15] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
|