作物学报 ›› 2011, Vol. 37 ›› Issue (02): 191-201.doi: 10.3724/SP.J.1006.2011.00191
• 综述 • 下一篇
王建康,李慧慧,张学才,尹长斌,黎裕,马有志,李新海,邱丽娟,万建民*
WANG Jian-Kang,LI Hui-Hui,ZHANG Xue-Cai,YIN Chang-Bin,LI Yu,MA You-Zhi,LI Xin-Hai,QIU Li-Juan,WAN Jian-Min*
摘要: 分子设计育种通过多种技术的集成与整合,对育种程序中的诸多因素进行模拟、筛选和优化,提出最佳的符合育种目标的基因型以及实现目标基因型的亲本选配和后代选择策略,以提高作物育种中的预见性和育种效率,实现从传统的“经验育种”到定向、高效的“精确育种”的转化。分子设计育种主要包含以下3个步骤:(1)研究目标性状基因以及基因间的相互关系,即找基因(或生产品种的原材料),这一步骤包括构建遗传群体、筛选多态性标记、构建遗传连锁图谱、数量性状表型鉴定和遗传分析等内容;(2)根据不同生态环境条件下的育种目标设计目标基因型,即找目标(或设计品种原型),这一步骤利用已经鉴定出的各种重要育种性状的基因信息,包括基因在染色体上的位置、遗传效应、基因到性状的生化网络和表达途径、基因之间的互作、基因与遗传背景和环境之间的互作等,模拟预测各种可能基因型的表现型,从中选择符合特定育种目标的基因型;(3)选育目标基因型的途径分析,即找途径(或制定生产品种的育种方案)。本文评述近几年来我国在遗传研究材料创新、重要性状遗传分析、育种模拟工具开发和应用、设计育种实践、分子设计育种技术体系建设等方面取得的重要进展,结合国内外研究现状对分子设计育种的未来进行展望,最后指出我国近期应加强育种预测方法和工具、基因和环境互作、遗传交配设计、作物功能基因组学、生物信息学方法和工具、设计育种技术体系和决策支持平台等领域的研究,同时重视人才培养和团队建设。
[1]Allard R W. Principles of Plant Breeding, 2nd edn. New York: John Wiley & Sons, 1999 [2]Bernardo R. Breeding for Quantitative Traits in Plants. Woodbury, Minnesota: Stemma Press, 2002 [3]Cooper M, Hammer G L. Plant Adaptation and Crop Improvement. Wallingford, UK: CAB International, 1996 [4]Zhai H-Q(翟虎渠), Wang J-K(王建康). Applied Quantitative Genetics (应用数量遗传). Beijing: China Agricultural Science and Technology Press, 2007 (in Chinese) [5]Wang J, Ginkel M, Podlich D, Ye G, Trethowan R, Pfeiffer W, DeLacy I H, Cooper M, Rajaram S. Comparison of two breeding strategies by computer simulation. Crop Sci, 2003, 43: 1764-1773 [6]Peleman J D, Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334 [7]Wan J-M(万建民). Perspectives of molecular design breeding in crops. Acta Agron Sin (作物学报), 2006, 32(3): 455-462 (in Chinese with English abstract) [8]Wang J, Wan X, Li H, Pfeiffer W, Crouch J, Wan J. Application of identified QTL-marker associations in rice quality improvement through a design breeding approach. Theor Appl Genet, 2007, 115: 87-100 [9]Wan J-M(万建民). Molecular design breeding in Super Rice. J Shenyang Agric Univ (沈阳农业大学学报), 2007, 38(5): 652-661 (in Chinese with English abstract) [10]Zhou D-G(周德贵), Zhao Q-Y(赵琼一), Fu C-Y(付崇允), Li H(李宏), Cai X-F(蔡学飞), Luo D(罗达), Zhou S-C(周少川). The next generation sequencing and its effect on the rice molecular design breeding. Mol Plant Breed(分子植物育种), 2008, 6(4): 619-630 (in Chinese with English abstract) [11]Li Y(黎裕), Wang J-K(王建康), Qiu L-J(邱丽娟), Ma Y-Z(马有志), Li X-H(李新海), Wan J-M(万建民). Crop molecular breeding in China: current status and perspectives. Acta Agron Sin (作物学报), 2010, 36(9): 1425-1430 (in Chinese with English abstract) [12]Mackay T F C, Stone E A, Ayroles J F. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet, 2009, 10: 565-577 [13]Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93-104 [14]Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374 [15]Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260 [16]Zhang L, Li H, Li Z, Wang J. Interactions between markers can be caused by the dominance effect of QTL. Genetics, 2008, 180: 1177-1190 [17]Phillips P C. Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet, 2008, 9: 855-867 [18]Wang J-K(王建康). Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin (作物学报), 2009, 35(2): 239-245 (in Chinese with English abstract) [19]Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breed Sci, 2002, 52: 319-325 [20]Cowley A W Jr, Roman R J, Jacob H J. Application of chromosome substitution techniques in gene-function discovery. J Physiol, 2003, 554: 46-55 [21]Wan X Y, Wan J M, Su C C, Wang C M, Shen W B, Li J M, Wang H L, Jiang L, Liu S J, Chen L M, Yasui H, Yoshimura A. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet, 2004, 110: 71-79 [22]Zeng R-Z(曾瑞珍), Shi J-Q(施军琼), Huang C-F(黄朝锋), Zhang Z-M(张泽民), Ding X-H(丁效华), Li W-T(李文涛), Zhang G-Q(张桂权). Development of a series of single segment substitution lines in indica background of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(1): 88-95 (in Chinese with English abstract) [23]Xu H-S(徐华山), Sun Y-J(孙永建), Zhou H-J(周红菊), Yu S-B(余四斌). Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agron Sin (作物学报), 2007, 33(6): 979-986 (in Chinese with English abstract) [24]Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422: 618-621 [25]Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334-1346 [26]Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C H, Wang J L, Zhang X, Cheng Z J, Guo X P. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258-1270 [27]Zhao F-M(赵芳明), Zhang G-Q(张桂权), Zeng R-Z(曾瑞珍), Yang Z-L(杨正林), Zhu H-T(朱海涛), Zhong B-Q(钟秉强), Ling Y-H(凌英华), He G-H(何光华). Additive effects and epistasis effects of QTL for plant height and its components using single segment substitution lines (SSSLs) in rice. Acta Agron Sin (作物学报), 2009, 35(1): 48-56 (in Chinese with English abstract) [28]Zhang Z-M(张泽民), Zhu H-T(朱海涛), Wang J(王江), Chen Z-G(陈兆贵), Liu F(刘芳), Wan X-S(宛新杉), Zhang J-L(张景六), Zhang G-Q(张桂权). Genetic analysis of a more-tiller mutant by T-DNA insertion in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(11): 1737-1741 (in Chinese with English abstract) [29]Wang J-K(王建康), Pfeiffer W H. Principle of simulation modeling with applications in plant breeding (in Chinese). Sci Agric Sin (中国农业科学), 2007, 40(1): 1-12 (in Chinese with English abstract) [30]Wang J, Ginkel M, Trethowan R, Ye G, DeLacy I H, Podlich D, Cooper M. Simulating the effects of dominance and epistasis on selecting response in the CIMMYT wheat breeding program using QuCim. Crop Sci, 2004, 44: 2006-2018 [31]Wang J, Singh R P, Braun H J, Pfeiffer W H. Investigating the efficiency of the single backcrossing breeding strategy through computer simulation. Theor Appl Genet, 2009, 118: 683-694 [32]Wang J, Eagles H A, Trethowan R, Ginkel M. Using computer simulation of the selection process and known gene information to assist in parental selection in wheat quality breeding. Aust J Agric Res, 2005, 56: 465-473 [33]Wang J, Chapman S C, Bonnett D B, Rebetzke G J, Crouch J. Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci, 2007, 47: 580-588 [34]Wang J, Chapman S C, Bonnett D G, Rebetzke G J. Simultaneous selection of major and minor genes: use of QTL to increase selection efficiency of coleoptile length of wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 119: 65-74 [35]Zhang Q. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409 [36]Wei X, Liu L, Xu J, Jiang L, Zhang W, Wang J, Zhai J, Wan J. Breeding strategies for optimum heading date using genotypic information in rice. Mol Breed, 2009, 25: 287-298 [37]Chen L, Zhao Z, Liu X, Liu L, Jiang L, Liu S, Zhang W, Wang Y, Liu Y, Wan J. Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice. Mol Breed, 2010, DOI: 10.1007/s11032-010-9427-z (online published) [38]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda, H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714-718 [39]McMullen M D, Kresovich S, Villeda H S, Bradbury P J, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325: 737-740 [40]The Complex Trait Consortium. The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet, 2004, 36: 1133-1137 [41]Hopspital F, Chevalet C, Mulsant P. Using markers in gene introgression breeding programs. Genetics, 1992, 132: 1199-1210 [42]Frisch M, Bohn M, Melchinger A E. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci, 1999, 39: 1295-1301 [43]Frisch M, Melchinger A E. Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci, 2001, 41: 1716-172 [44]Frisch M, Melchinger A E. Selection theory for marker-assisted backcrossing. Genetics, 2005, 170: 909-917 [45]Prigge V, Melchinger A E, Dhillon B S, Frisch M. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations. Theor Appl Genet, 2009, 119: 23-32 [46]Bernardo R, Charcosset A. Usefulness of gene information in marker-assisted recurrent selection: A simulation appraisal. Crop Sci, 2006, 46: 614-621 [47]Bernardo R, Moreau L, Charcosset A. Number and fitness of selected individuals in marker-assisted and phenotypic recurrent selection. Crop Sci, 2006, 46: 1972-1980 [48]Lorenzana R E, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet, 2009, 120: 151-161 [49]Mayor P J, Bernardo R. Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci, 2009, 49: 1719-1725 [50]Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci, 2007, 47: 1082-1090 [51]Wong C K, Bernardo R. Genomewide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theor Appl Genet, 2008, 116: 815-824 [52]Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci, 2008, 48: 1649-1664 [53]Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12 [54]Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157: 1819-1829 [55]Servin B, Martin O C, Mezard M, Hospital F. Toward a theory of marker-assisted pyramiding. Genetics, 2004, 168: 513-523 [56]Schaeffer L R. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet, 2006, 123: 218-223 [57]Piyasatian N, Fernando R L, Dekkers J C M. Genomic selection for marker-assisted improvement in line crosses. Theor Appl Genet, 2007, 115: 665-674 [58]de Roos A P, Schrooten C, Mullaart E, Calus M P, Veerkamp R F. Breeding value estimation for fat percentage using dense markers on Bos taurus autosome 14. J Dairy Sci, 2007, 90: 4821-4829 [59]Solberg T R, Sonesson A K, Woolliams J A, Meuwissen T H E. Genomic selection using different marker types and densities. J Anim Sci, 2008, 86: 2447-2454 [60]Habier D, Fernando R L, Dekkers J C M. Genomic selection using low-density marker panels. Genetics, 2009, 182: 343-353 [61]Bernardo R. Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci, 2009, 49: 419-425 [62]Hayes B J, Bowman P J, Chamberlain A J, Goddard M E. Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci, 2009, 92: 433-443 [63]Muir W M. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet, 2007, 124: 342-355 [64]Goddard M E. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 2008, 136: 245-257 [65]Zhong S, Dekkers J C M, Fernando R L, Jannink J L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics, 2009, 182: 355-364 [66]Metzker M L. Sequencing technologies: the next generation. Nat Rev Genet, 2010, 11: 31-46 [67]Salathia N, Lee H N, Sangster T A, Morneau K, Landry C R, Schellenberg K, Behere A S, Gunderson K L, Cavalieri D, Jander G, Queitsch C. Indel arrays: an affordable alternative for genotyping. Plant J, 2007, 51: 727-737 [68]David Hawkins R, Hon G C, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet, 2010, 11: 476-486 [69]Thomas D. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet, 2010, 11: 259-272 [70]Pastinen, T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet, 2010, 11: 533-538 [71]Cooper M, Podlich D W, Smith O S. Gene-to-phenotype and complex trait genetics. Aust J Agric Res, 2005, 56: 895-918 [72]Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge. Nat Rev Genet, 2010, 11: 855-866 |
[1] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[2] | 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941. |
[3] | 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展[J]. 作物学报, 2022, 48(1): 1-14. |
[4] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[5] | 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615. |
[6] | 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019. |
[7] | 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458. |
[8] | 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079. |
[9] | 李艳大, 曹中盛, 舒时富, 孙滨峰, 叶春, 黄俊宝, 朱艳, 田永超. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035. |
[10] | 古丽努尔·依沙克,买买提·沙吾提,马春玥. 基于多时相双极化SAR数据的作物种植面积提取[J]. 作物学报, 2020, 46(7): 1099-1111. |
[11] | 杨海波,张加康,杨柳,贾禹泽,刘楠,李斐. 品种和生育时期对冠层光谱指数(NDVI)估测马铃薯植株氮素浓度的影响[J]. 作物学报, 2020, 46(6): 950-959. |
[12] | 姚兆磊, 张继宗, 杜玉琼, 刘玉华, 张立峰. 华北寒旱区作物轮作的生产效应[J]. 作物学报, 2020, 46(12): 1923-1932. |
[13] | 栗扬,姚露花,郭欣,赵晓,黄蕾,王登科,张学风,肖前林,杨瑞吉,郭彦军. 三种豆科绿肥作物茎和叶角质层蜡质化学组成分析[J]. 作物学报, 2020, 46(01): 131-139. |
[14] | 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406. |
[15] | 赵明,周宝元,马玮,李从锋,丁在松,孙雪芳. 粮食作物生产系统定量调控理论与技术模式[J]. 作物学报, 2019, 45(4): 485-498. |
|