欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 389-396.doi: 10.3724/SP.J.1006.2011.00389

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花叶片早衰的诊断及遗传效应分析

郝俊杰1,刘焕民1,马奇祥1,崔小伟1,于霁雯2,贾新合3,高俊山4   

  1. 1 河南省农业科学院植物保护研究所 / 河南省农作物病虫害防治重点实验室, 河南郑州 450002;2 中国农业科学院棉花研究所, 河南安阳455000;3 郑州市农林科学研究所, 河南郑州 450005;4 开封市农林科学研究院, 河南开封 475004
  • 收稿日期:2010-06-11 修回日期:2010-12-06 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 基金资助:

    本研究由 转基因生物新品种培育重大专项(2008ZX08005-002)和国家棉花产业技术体系和国家科技支撑计划(2006BAD01A05-11)项目资助。

Genetic Effects and Diagnosis of Premature Senescence of Leaf in Upland Cotton

HAO Jun-Jie1,LIU Huan-Min1,MA Qi-Xiang1,CUI Xiao-Wei1,YU Ji-Wen2,JIA Xin-He3,GAO Jun-Shan4   

  1. 1 Plant Protection Institute, Henan Academy of Agricultural Sciences / Henan Key Laboratory for Control of Crop Diseases and Insect Pests, Zhengzhou 450002, China; 2 China Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, China; 3 Zhengzhou Institute of Agriculture and Forestry Sciences, Zhengzhou 450002, China; 4 Kaifeng Academy of Agriculture and Forestry Sciences, Kaifeng 475004, China
  • Received:2010-06-11 Revised:2010-12-06 Published:2011-03-12 Published online:2011-01-17

摘要: 比较了利用活体叶片快速、无损害诊断棉花叶片早衰的SPAD差值法和绿色叶面积分级诊断方法,并分析了棉花叶片早衰的数量遗传行为。选用不同叶形和早衰类型的9个棉花品种(系),比较开花当天倒4叶及以后每5 d一次的SPAD值表明, 早衰棉花品种在开花35 d后SPAD值明显降低,因此,将开花后35 d和开花当天倒4叶的SPAD的差值作为诊断棉花叶片早衰的指标。构建持绿亲本33B和早衰亲本CJ463的6个世代(P1、F1、P2、F2、BC1和BC2),用联合尺度检验法对其叶片早衰的数据进行世代均值分析,结果表明棉花叶片早衰主要受加性遗传效应控制,至少是一对加性效应的主基因控制陆地棉叶片早衰遗传,且遗传力较高,说明对持绿材料的早代选择是有效的。总之,用SPAD差值和绿色叶面积分级两种诊断叶片早衰的方法来分析叶片早衰遗传及其与叶面积关系的结果基本一致。

关键词: 棉花, SPAD值, 叶片早衰, 遗传效应

Abstract: Premature senescence of cotton has been occurring on an increasing scale in China, directly influencing both yield and fiber quality. The most effective way avoiding premature senescence is to obtain stay-green variety in breeding programs. Moreover, plant breeders demand a simple and efficient diagnosis method, and farther understand the genetic basis of premature senescence in cotton. The objective of this paper was to discuss the quick measurement harmless to plant, and to analyze the genetic effects for leaf premature senescence in upland cotton. The SPAD readings of the fourth leaf from the top were measured at the flowering day and also each five days after flowering in nine cotton varieties (lines). The SPAD readings at 35 days after flowering (DAF) were decreasing in premature  senescence cotton varieties (lines). Therefore, the SPAD difference between 35 DAF and the flowering day was calculated as an indicator of the reduction in chlorophyll content; the greater the rate of reduction, the earlier the senescence, and vice versa. The degree of leaf premature senescence was expressed by the reduction of SPAD or the scale of the green-area in generations (P1, F1, P2, F2, BC1, and BC2) of the 33B×CJ463 cross. Generation mean analyses were conducted to explain the inheritance of leaf premature senescence. The results showed the relative importance of additive effects controlling leaf premature senescence. The estimated minimum number of genes controlling leaf premature senescence was an additive major allele at least with relatively high heritability, suggesting the early selection for late-senescence varieties (lines) was effective in the offspring. The relationships between premature senescence and leaf area per plant were different in the different segregating generations. In a few words, the results of genetic analysis and the relationships between premature senescence and leaf area measured by the reduction of SPAD and the scale of the green-area were relatively consistent.

Key words: Cotton, SPAD reading, Leaf premature senescence, Genetic effects

[1]Diaz C, Purdy S, Christ A, Morot-Gaudry J F, Wingler A, Masclaux-Daubresse C. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. Plant Physiol, 2005, 138: 898–908
[2]Sadras V O, Echarte L, Andrade F H. Profiles of leaf senescence during reproductive growth of sunflower and maize. Ann Bot, 2000, 85: 187–195
[3]Brevedan R E, Egli D B. Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci, 2003, 43: 2083–2088
[4]Jiang G H, He Y Q, Xu C G, Li X H, Zhang Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688–698
[5]Abdelkhalik A F, Shishido R, Nomura K, Ikehashi H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet, 2005, 110: 1226–1235
[6]Borrell A K, Hammer G L, Douglas A C L. Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci, 2000, 40: 1026–1037
[7]Thomas H, Howarth C J. Five ways to stay green. J Exp Bot, 2000, 51: 329–337
[8]Yu S-X(喻树迅), Song M-Z(宋美珍), Fan S-L(范术丽), Yuan R-H(原日红). Studies on biochemical assistant breeding technology of earliness without premature senescence of the short-season upland cotton. Sci Agric Sin (中国农业科学), 2005, 38(4): 664–670 (in Chinese with English abstract)
[9]Song M-Z(宋美珍), Yu S-X(喻树迅), Fan S-L(范术丽), Yuan R-H(原日红), Huang Z-M(黄祯茂). Genetic analysis is of biochemical traits in short season upland cotton with no premature senescence. Acta Bot Boreali-Occident Sin (西北植物学报), 2005, 25(5): 903–910 (in Chinese with English abstract)
[10]Perez-Perez J M, Serrano-Cartagena J, Micol J L. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics, 2002, 162: 893–915
[11]Waghmare V N, Rong J K, Rogers C J, Pierce G J, Wendel J F, Paterson A H. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet, 2005, 111: 665–676
[12]Hao J J, Yu S X, Dong Z D, Fan S L, Ma Q X, Song M Z, Yu J W. Quantitative inheritance of leaf morphological traits in upland cotton. J Agric Sci, 2008, 146: 561–569
[13]Cavalli L L. Analysis of Linkage Quantitative Inheritance. In: Reevea E C R, Waddington C H, eds. Quantitative Inheritance, London: HMSO, 1952. pp 135–144
[14]Mather K, Jinks J L. Biometrical Genetics, 3rd edn. London: Chapman and Hall, 1982
[15]Gusmini G, Wehner T C, Donaghy S B. SASQuant: a SAS software program to estimate genetic effects and heritabilities of quantitative traits in populations consisting of 6 related generations. J Heredity, 2007, 98: 345–350
[16]Wright S. Evolution and the Genetics of Populations. Chicago: University of Chicago Press, 1968
[17]Lander R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics, 1981, 99: 541–553
[18]Robinson D C, Comstock R E, Harvery P H. Genetic variances in open pollinated corn. Genetics, 1955, 40: 45–60
[19]Wright P R. Premature senescence of cotton (Gossypium hirsutum L.): predominantly a potassium disorder caused by an imbalance of source and sink. Plant Soil, 1999, 211: 231–239
[20]Yu H(鱼欢), Wu H-S(邬华松), Wang Z-J(王之杰). Evaluation of SPAD and Dualex for in-season corn nitrogen status estimation. Acta Agron Sin (作物学报), 2010, 36(5): 840−847 (in Chinese with English abstract)
[21]Qu W-Q(屈卫群), Wang S-H(王绍华), Chen B-L(陈兵林), Wang Y-H(王友华), Zhou Z-G(周治国). SPAD Value of cotton leaves on main stem and nitrogen diagnosis for cotton growth. Acta Agron Sin (作物学报), 2007, 33(6): 1010–1017 (in Chinese with English abstract)
[22]Yu S X, Song M Z, Fan S L, Wang W, Yuan R H. Biochemical genetics of shot-season cotton cultivars that express early maturity without senescence. J Integr Plant Biol, 2005, 47: 334–342
[23]Dong H, Niu Y, Li W, Zhang D. Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot, 2008, 59: 1295–1304
[24]Hallauer A R, Miranda J B. Quantitative genetics in maize breeding. 2nd ed. Ames (IA): Iowa State University Press, 1988
[25]Zalapa J E, Staub J E, Mccreight J D. Generation means analysis of plant architectural traits and fruit yield in melon. Plant Breed, 2006, 125: 482–487
[26]Kerby T A, Buxton D R. Effect of leaf shape and plant population on rate of fruiting position appearance in cotton. Agron J, 1978, 70: 535–538
[27]Pettigrew W T, Heitholt J J, Vaughn K C. Gas exchange differences and comparative anatomy among cotton leaf-type isolines. Crop Sci, 1993, 33: 1295–1299
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!