作物学报 ›› 2011, Vol. 37 ›› Issue (03): 381-388.doi: 10.3724/SP.J.1006.2011.00381
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
刘秀林1,2,昌小平2,李润植1,景蕊莲2,*
LIU Xiu-Lin1,2,CHANG Xiao-Ping2,LI Run-Zhi1,JING Rui-Lian2,*
摘要: 为探讨小麦种子根结构及胚芽鞘长度的遗传基础,以小麦DH群体(旱选10号×鲁麦14)的150个株系为材料,利用凝胶室培养幼苗,测定种子根的数目和最大根长、胚芽鞘长度、根苗干重比等性状,并通过扫描仪测定幼苗种子根的总长度、根直径及角度。利用已经构建的DH群体遗传连锁图谱,采用基于混合线性模型的复合区间作图法分析上述性状的QTL。在1A、1B、2B、2D、3B、4A、4D、5A、5B、6A、7A和7B共12条染色体上检测到12个加性效应QTL和7对加性×加性互作效应QTL。QTL的加性效应值在0.02~8.45之间,对表型变异的贡献率为5.64%~12.37%。7对加性×加性互作效应QTL分布在1A–2B(2)、1A–6A、1B–2D、5B–6A、6A–7A和6A–7B等6对染色体之间,其互作效应值为0.20~7.45,对表型变异的贡献率为8.70%~15.90%。在染色体3B和7A上各检测到1个种子根结构相关性状的QTL簇。
[1]Ma Y-X(马元喜). The Root of Wheat (小麦的根). Beijing: China Agriculture Press, 1999. pp 1–20 (in Chinese) [2]Manschadi A M, Hammer G L, Christopher J T, deVoil P. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil, 2008, 303: 115–129 [3]Manschadi A M, Christopher J, de Voil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006, 33: 823–837 [4]Hurd E A. Growth of roots of seven varieties of spring wheat at high and low moisture levels. Agron J, 1968, 60: 201–205 [5]Miao G-Y(苗果园), Zhang Y-T(张云亭), Yin J(尹钧), Hou Y-S(侯跃生), Pan X-L(潘幸来). A study on the development of root system in winter wheat under unirrigated conditions in semi-arid loess plateau. Acta Agron Sin (作物学报), 1989, 19(2): 104–115 (in Chinese with English abstract) [6]Liang Y-L(梁银丽), Chan P-Y(陈培元). Characteristic of Wheat Varieties in Arid Region (旱地小麦品种的特征特性). In: Shan L. Fundamentals of Physiology and Ecology in Arid Agriculture. Beijing: Science Press, 1998. pp 259–266 (in Chinese) [7]Li L-H(李鲁华), Li S-Q(李世清), Zhai J-H(翟军海), Shi J-H(史俊海). Review of the relationship between wheat roots and water stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(1): 1–7 (in Chinese with English abstract) [8]Chang X-P(昌小平), Wang H(王嬛), Yang L(杨莉). Changes of root activity and water state at seedling stage of winter wheat varieties with different drought-resistance under different water conditions. Plant Physio Commun (植物生理学通讯), 1996, 32(3): 178–182 (in Chinese with English abstract) [9]Duan S-S(段舜山), Gu W-X(谷文祥), Zhang D-Y(张大勇), Li F-M(李凤民). Relationship between root system characteristics and drought resistance of wheat populations in semiarid region. Chin J Appl Ecol (应用生态学报), 1997, 8(2): 134–138 (in Chinese with English abstract) [10]Dhanda S S, Sethi G S, Behl R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci, 2004, 190: 6–12 [11]Champoux M C, Wang G, Sarkarung S, Mackill D J, Toole T C O, Huang N, McCouch S R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969–981 [12]Ray J D, Yu L X, Mccouch S R, Mackill D J, Toole T C O, Huang N, MeCouch S R. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627–636 [13]Mu P(穆平), Li Z-C(李自超), Li C-P(李春平), Zhang H-L(张洪亮), Wu C-M(吴长明), Li C(李晨), Wang X-K(王象坤). QTL mapping and G×E interaction for root traits in a DH population from japonica upland and lowland rice cross under three ecosystems. Chin Sci Bull (科学通报), 2003, 48(20): 2162–2169 (in Chinese) [14]Zhang Z-B(张正斌), Xu P(徐萍). Reviewed on wheat genome. Heredity (遗传), 2002, 24(3): 389–394 (in Chinese with English abstract) [15]Zhou X-G(周晓果), Jing R-L(景蕊莲), Hao Z-F(郝转芳), Chang X-P(昌小平), Zhang Z-B(张正斌). Mapping QTL for seedling root traits in common wheat. Sci Agric Sin (中国农业科学), 2005, 38(10): 1951–1957 (in Chinese with English abstract) [16]Li Z-K(李卓坤), Peng T(彭涛), Zhang W-D(张卫东), Xie Q-G(谢全刚), Tian J-C(田纪春). Analysis of QTLs for root traits at seedling stage using an “Immortalized F2” population of wheat. Acta Agron Sin (作物学报), 2010, 36(3): 442–448 (in Chinese with English abstract) [17]Bengough A G, Gordon D C, Al-Menaie H, Ellis R P, Allan D, Keith R, Thomas W T B, Forster B P. Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant & Soil, 2004, 262: 63–70 [18]Sanguineti M C, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol, 2007, 151: 291–305 [19]Jing R-L(景蕊莲), Chang X-P(昌小平), Jia J-Z (贾继增), Hu R-H (胡荣海). Establishing wheat doubled haploid population for genetic mapping by anther culture. Biotechnology (生物技术), 1999, 9(3): 4–8 (in Chinese with English abstract) [20]Hao Z F, Chang X P, Guo X J, Jing R L, Li R Z, Jia J Z. QTL mapping for drought tolerance at stages of germination and seedling in wheat (Triticum aestivum L.) using a DH population. Sci Agric China, 2003, 2: 943–949 [21]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268−1274 [22]McIntosh R A, Hart G E, Devos K M, Rogers W J. Catalogue of gene symbols for wheat. 1999. http://grain.jouy.inra.fr/ggpages/wgc [23]Reyniers F N, Binh T. Screening with Phosphorus32 for rooting depth among varieties of rain-fed rice. Paper Presented in the Conference on Rice in Africa, IITA, lbadan, NIgeria, 1977 [24]Jing R-L(景蕊莲), Hu R-H(胡荣海), Zhu Z-H(朱志华), Chang X-P(昌小平). A study on heritabilities of seedling morphological traits and drought resistance in winter wheat cultivars of different genotype. Act Bot Boreal-Occident Sin (西北植物学报), 1997, 17(2): 152–157 (in Chinese with English abstract) [25]Price A H, Steele K A, Moore B J, Jones R G W. Upland rice grown in soil-?lled chambers and exposed to contrasting water-de?cit regimes: II. Mapping quantitative trait loci for root morphology and distributing. Field Crops Res, 2002, 76: 25–43 [26]An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant & Soil, 2006, 284: 73–84 [27]Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2001, 28(8): 752–759 (in Chinese with English abstract) [28]Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270−278 (in Chinese with English abstract) [29]Rebetzke G J, Bruce S E, Kirkegaard J A. Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant & Soil, 2005, 272: 87–100 [30]Botwright T L, Rebetzke G J, Condon A G, Richards R A. The effect of rat genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Aust J Plant Physiol, 2001, 15: 417–423 [31]Rebetzke G J, Ellis M H, Bonnett D G., Richards R A. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1173–1183 [32]Rebetzke G J, Appels R, Morrison A, Richards R A, McDonald G, Ellis M H, Spielmeyer W, Bonnett D G. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res, 2001, 52: 1221–1234 [33]Landjeva S, Neumann K, Lohwasser U, Börner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plantarum, 2008, 52: 259–266 [34]Wu X S, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat (Triticum aestivum L.) under diverse water regimes. J Exp Bot, 2010, 61: 2923–2937 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|