欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 381-388.doi: 10.3724/SP.J.1006.2011.00381

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

小麦种子根结构及胚芽鞘长度的QTL分析

刘秀林1,2,昌小平2,李润植1,景蕊莲2,*   

  1. 1 山西农业大学,山西太谷 030801;2 国家农作物基因资源与基因改良重大科学工程 / 农业部作物种质资源与生物技术重点开放实验室 / 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2010-08-18 修回日期:2010-12-06 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 通讯作者: 景蕊莲, E-mail: jingrl@caas.com.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB125905)和CGIAR挑战计划项目(GCP, G7010.02.01)资助。

Mapping QTLs for Seminal Root Architecture and Coleoptile Length in Wheat

LIU Xiu-Lin1,2,CHANG Xiao-Ping2,LI Run-Zhi1,JING Rui-Lian2,*   

  1. 1 Shanxi Agricultural University, Taigu 030801, Shanxi, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm & Biotechnology, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-08-18 Revised:2010-12-06 Published:2011-03-12 Published online:2011-01-17
  • Contact: 景蕊莲, E-mail: jingrl@caas.com.cn

摘要: 为探讨小麦种子根结构及胚芽鞘长度的遗传基础,以小麦DH群体(旱选10号×鲁麦14)的150个株系为材料,利用凝胶室培养幼苗,测定种子根的数目和最大根长、胚芽鞘长度、根苗干重比等性状,并通过扫描仪测定幼苗种子根的总长度、根直径及角度。利用已经构建的DH群体遗传连锁图谱,采用基于混合线性模型的复合区间作图法分析上述性状的QTL。在1A、1B、2B、2D、3B、4A、4D、5A、5B、6A、7A和7B共12条染色体上检测到12个加性效应QTL和7对加性×加性互作效应QTL。QTL的加性效应值在0.02~8.45之间,对表型变异的贡献率为5.64%~12.37%。7对加性×加性互作效应QTL分布在1A–2B(2)、1A–6A、1B–2D、5B–6A、6A–7A和6A–7B等6对染色体之间,其互作效应值为0.20~7.45,对表型变异的贡献率为8.70%~15.90%。在染色体3B和7A上各检测到1个种子根结构相关性状的QTL簇。

关键词: 小麦, 种子根结构, 胚芽鞘长度, 数量性状位点, DH群体, 凝胶室

Abstract: Root system is important for belowground nutrients acquisition, and is also an important part to respond to drought stress. The purpose of this study was to dissect the genetic basis of seminal root architecture and coleoptile length of wheat by mapping quantitative trait loci (QTLs) of target traits. A doubled haploid (DH) population with 150 lines derived from a cross between two common Chinese wheat varieties Hanxuan 10 and Lumai 14 was used as the plant materials. Gel-chamber was employed to evaluate seminal root architecture traits, including maximum root length (MRL), root number (RN), total root length (TRL), root diameter (RD), root angle (RA), ratio of root dry weight to shoot dry weight (RDW/SDW), and coleoptile length (CL) of seedlings. QTLs for these traits were detected using mixed-model-based composite interval mapping method. A total of 12 additive-effect QTLs and 7 pairs of additive × additive QTLs associated with the target traits were mapped on chromosomes 1A, 1B, 2B, 2D, 3B, 4A, 4D, 5A, 5B, 6A, 7A, and 7B. The phenotypic variation explained by individual additive-effect QTL varied from 5.64% to 12.37%. The additive effects ranged from 0.20 to 7.45. The phenotypic variation explained by each pair of epistatic QTLs varied from 8.70% to 15.90%. Two QTL clusters for seedling root traits were detected on chromosomes 3B and 7A. These results would be helpful to maker-assisted selection of seminal root architecture and coleoptile.

Key words: Wheat, Seminal root architecture, Coleoptile length, QTL, DH lines, Gel-chamber

[1]Ma Y-X(马元喜). The Root of Wheat (小麦的根). Beijing: China Agriculture Press, 1999. pp 1–20 (in Chinese)
[2]Manschadi A M, Hammer G L, Christopher J T, deVoil P. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil, 2008, 303: 115–129
[3]Manschadi A M, Christopher J, de Voil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006, 33: 823–837
[4]Hurd E A. Growth of roots of seven varieties of spring wheat at high and low moisture levels. Agron J, 1968, 60: 201–205
[5]Miao G-Y(苗果园), Zhang Y-T(张云亭), Yin J(尹钧), Hou Y-S(侯跃生), Pan X-L(潘幸来). A study on the development of root system in winter wheat under unirrigated conditions in semi-arid loess plateau. Acta Agron Sin (作物学报), 1989, 19(2): 104–115 (in Chinese with English abstract)
[6]Liang Y-L(梁银丽), Chan P-Y(陈培元). Characteristic of Wheat Varieties in Arid Region (旱地小麦品种的特征特性). In: Shan L. Fundamentals of Physiology and Ecology in Arid Agriculture. Beijing: Science Press, 1998. pp 259–266 (in Chinese)
[7]Li L-H(李鲁华), Li S-Q(李世清), Zhai J-H(翟军海), Shi J-H(史俊海). Review of the relationship between wheat roots and water stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(1): 1–7 (in Chinese with English abstract)
[8]Chang X-P(昌小平), Wang H(王嬛), Yang L(杨莉). Changes of root activity and water state at seedling stage of winter wheat varieties with different drought-resistance under different water conditions. Plant Physio Commun (植物生理学通讯), 1996, 32(3): 178–182 (in Chinese with English abstract)
[9]Duan S-S(段舜山), Gu W-X(谷文祥), Zhang D-Y(张大勇), Li F-M(李凤民). Relationship between root system characteristics and drought resistance of wheat populations in semiarid region. Chin J Appl Ecol (应用生态学报), 1997, 8(2): 134–138 (in Chinese with English abstract)
[10]Dhanda S S, Sethi G S, Behl R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci, 2004, 190: 6–12
[11]Champoux M C, Wang G, Sarkarung S, Mackill D J, Toole T C O, Huang N, McCouch S R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969–981
[12]Ray J D, Yu L X, Mccouch S R, Mackill D J, Toole T C O, Huang N, MeCouch S R. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627–636
[13]Mu P(穆平), Li Z-C(李自超), Li C-P(李春平), Zhang H-L(张洪亮), Wu C-M(吴长明), Li C(李晨), Wang X-K(王象坤). QTL mapping and G×E interaction for root traits in a DH population from japonica upland and lowland rice cross under three ecosystems. Chin Sci Bull (科学通报), 2003, 48(20): 2162–2169 (in Chinese)
[14]Zhang Z-B(张正斌), Xu P(徐萍). Reviewed on wheat genome. Heredity (遗传), 2002, 24(3): 389–394 (in Chinese with English abstract)
[15]Zhou X-G(周晓果), Jing R-L(景蕊莲), Hao Z-F(郝转芳), Chang X-P(昌小平), Zhang Z-B(张正斌). Mapping QTL for seedling root traits in common wheat. Sci Agric Sin (中国农业科学), 2005, 38(10): 1951–1957 (in Chinese with English abstract)
[16]Li Z-K(李卓坤), Peng T(彭涛), Zhang W-D(张卫东), Xie Q-G(谢全刚), Tian J-C(田纪春). Analysis of QTLs for root traits at seedling stage using an “Immortalized F2” population of wheat. Acta Agron Sin (作物学报), 2010, 36(3): 442–448 (in Chinese with English abstract)
[17]Bengough A G, Gordon D C, Al-Menaie H, Ellis R P, Allan D, Keith R, Thomas W T B, Forster B P. Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant & Soil, 2004, 262: 63–70
[18]Sanguineti M C, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol, 2007, 151: 291–305
[19]Jing R-L(景蕊莲), Chang X-P(昌小平), Jia J-Z (贾继增), Hu R-H (胡荣海). Establishing wheat doubled haploid population for genetic mapping by anther culture. Biotechnology (生物技术), 1999, 9(3): 4–8 (in Chinese with English abstract)
[20]Hao Z F, Chang X P, Guo X J, Jing R L, Li R Z, Jia J Z. QTL mapping for drought tolerance at stages of germination and seedling in wheat (Triticum aestivum L.) using a DH population. Sci Agric China, 2003, 2: 943–949
[21]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268−1274
[22]McIntosh R A, Hart G E, Devos K M, Rogers W J. Catalogue of gene symbols for wheat. 1999. http://grain.jouy.inra.fr/ggpages/wgc
[23]Reyniers F N, Binh T. Screening with Phosphorus32 for rooting depth among varieties of rain-fed rice. Paper Presented in the Conference on Rice in Africa, IITA, lbadan, NIgeria, 1977
[24]Jing R-L(景蕊莲), Hu R-H(胡荣海), Zhu Z-H(朱志华), Chang X-P(昌小平). A study on heritabilities of seedling morphological traits and drought resistance in winter wheat cultivars of different genotype. Act Bot Boreal-Occident Sin (西北植物学报), 1997, 17(2): 152–157 (in Chinese with English abstract)
[25]Price A H, Steele K A, Moore B J, Jones R G W. Upland rice grown in soil-?lled chambers and exposed to contrasting water-de?cit regimes: II. Mapping quantitative trait loci for root morphology and distributing. Field Crops Res, 2002, 76: 25–43
[26]An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant & Soil, 2006, 284: 73–84
[27]Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2001, 28(8): 752–759 (in Chinese with English abstract)
[28]Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270−278 (in Chinese with English abstract)
[29]Rebetzke G J, Bruce S E, Kirkegaard J A. Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant & Soil, 2005, 272: 87–100
[30]Botwright T L, Rebetzke G J, Condon A G, Richards R A. The effect of rat genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Aust J Plant Physiol, 2001, 15: 417–423
[31]Rebetzke G J, Ellis M H, Bonnett D G., Richards R A. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1173–1183
[32]Rebetzke G J, Appels R, Morrison A, Richards R A, McDonald G, Ellis M H, Spielmeyer W, Bonnett D G. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res, 2001, 52: 1221–1234
[33]Landjeva S, Neumann K, Lohwasser U, Börner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plantarum, 2008, 52: 259–266
[34]Wu X S, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat (Triticum aestivum L.) under diverse water regimes. J Exp Bot, 2010, 61: 2923–2937
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!