欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 459-468.doi: 10.3724/SP.J.1006.2011.00459

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

硝普钠缓解花生铝毒害作用和影响AhSAGAhBI-1基因表达

詹洁1,2,王天菊1,何虎翼1,李创珍1,何龙飞1,*   

  1. 1 广西大学农学院,广西南宁530004;2广西大学国防教育学院,广西南宁530004
  • 收稿日期:2010-08-24 修回日期:2010-12-03 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 通讯作者: 何龙飞, E-mail: lfhe@gxu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30960181, 30560070)和广西大学科研基金(XJZ100341)资助。

Effects of SNP on AhSAG and AhBI-1 Genes Expression and Amelioration of Aluminum Stress to Peanut (Arachis hypoganea L.)

ZHAN Jie1,2,WANG Tian-Ju1,He Hu-Yi1,LI Chuang-Zhen1,HE Long-Fei1,*   

  1. 1 College of Agronomy, Guangxi University, Nanning 530004, China; 2 College of National Defense Education, Guangxi University, Nanning 530004, China
  • Received:2010-08-24 Revised:2010-12-03 Published:2011-03-12 Published online:2011-01-17
  • Contact: 何龙飞, E-mail: lfhe@gxu.edu.cn

摘要: 以花生为材料,研究了铝胁迫诱导花生发生细胞程序性死亡的条件下,加入外源NO供体SNP对不同耐性花生品种根尖生长及相关细胞程序性死亡基因的影响。根长生长、根尖苏木精染色和铝含量测定结果表明,适当浓度的SNP能够缓解一定浓度铝对花生根生长的毒害作用,1.0 mmol L–1的SNP缓解作用最明显,此浓度下,99-1507和中花2号与对照相比,根长增加45%和52%,根尖铝含量降低10%和23%,苏木精染色变浅。加入1.0 mmol L–1的SNP处理后,与对应铝胁迫相比,花生衰老基因AhSAG的相对表达量在耐铝品种99-1507中先升高后降低,在0.1 mmol L–1和0.4 mmol L–1 Al3+处理时,显著下降;在铝敏感品种中花2号中呈缓慢升高的趋势,在0.1 mmol L–1和0.4 mmol L–1 Al3+处理时,显著上升;花生细胞程序性死亡相关基因AhBI-1的相对表达量在99-1507中呈先升高后降低的趋势,在中花2号中则先降低后升高,当99-1507在0和0.02 mmol L–1 Al3+处理时,中花2号在0、0.02和0.1 mmol L–1 Al3+处理时,SNP处理后的AhBI-1表达量均低于对应的单独铝处理。由此说明,NO对花生铝毒害有一定的缓解作用,其作用机理可能与影响细胞程序性死亡基因表达而调控细胞程序性死亡有关。

关键词: 一氧化氮, 花生, 铝胁迫, 缓解效应, 基因表达

Abstract: Recent researches have found that NO (nitric oxide) plays an important role in mediating some biotic and abiotic stress-induced oxidative stresses in plant kingdom. Meanwhile, Al toxicity is a major constraint for crop production in acidic soils worldwide, especially in southern China. In order to enucleate the control effects of NO (nitric oxide) on aluminum (Al) stress, we researched the effects of exogenous NO donor (sodium nitroprusside, SNP) on rootelongation and relative gene expression when Al-induced PCD in root tips happened with peanut (Arachis hypoganea L.) as material. The results of root elongation, hematoxylin dying and root tips Al3+ content detection showed that suitable exogenous NO could alleviate Al toxicity on root tips of peanut, especially at 1.0 mmol L–1 SNP. Compared with the control, SNP at 1.0 mmol L–1 increased root growth 45% and 52%, decreased Al3+ content of root tips 10% and 23% in 99-1507 and Zhonghua 2, respectively, in the meanwhile, the color of root tips with hematoxylin dying became light. Compared to Al stress only, relative expression of AhSAG gene in 99-1507(Al-resistant) increased firstly, than decreased after adding SNP at 1.0 mmol L–1, it decreased significantly in 0.1 and 0.4 mmol L–1 Al treatments, while that inZhonghua No.2 increased slowly, it increased significantlyin 0.1 and 0.4 mmol L–1 Al3+ treatments. Compared with Al stress only, relative expression of PCD-related AhBI-1 gene in 99-1507 increased firstly, than decreased after adding SNP at 1.0 mmol L–1, but that in Zhonghua 2 had a reverse change. The relative expression of AhBI-1 gene was lower in Al+SNP treatmentsthan in Al treatments only at 0 and 0.02 mmol L–1 in 99-1507, and at 0, 0.02, and 0.1 mmol L–1 in Zhonghua 2. The results showed that NO can alleviate Al toxicity in peanut, and it maybe relate to theregulationof the expression of programmed cell death related genes, while controls the programmed cell death.

Key words: Nitric Oxide, Peanut (Arachis hypoganea L.), Aluminum stress, Ameliorating effect, Gene expression

[1]Li Y-X(李云霞), Cheng X-X(程晓霞), Dai X-M(代晓梅), Zeng H-M(曾会明), Han L-B(韩烈保). Study on programmed cell death of plants in environmental stress. Biotechnol Bull (生物技术通讯), 2009, (4): 7-11 (in Chinese with English abstract)
[2]Mittler R. Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci, 2002, 7: 405-410
[3]Ruan H H, Shen W B, Xu L L. Nitric oxide involed in the abscisic acid induced praline accumulation in wheat seedling leaves under salt stress. Acta Bot Sin, 2004, 46: 1307-1315
[4]Leshem Y Y, Willis R B H, Ku V V V. Evidence for the function of the free radical gas—nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plant. Plant Physiol Biochem, 1998, 36: 825-833
[5]Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotylselongation, three light-inducible responses in plants. Planta, 2000, 210: 215-221
[6]Belign M V, Fath A, Bethake P C, Lamattina L, Jones R L. Nitric oxide acts as an antioxidant and delays programmed cell death in barely aleurone layers. Plant Physiol, 2002, 129: 1642-1650
[7]Chandok M R, Ytterberg A J, Van Wijk K J, Klessig D F. The pathegon-inducible nitric oxide synthase (iNOS) in plant is a variant of the P protein of the glycine decarboxylase complex. Cell, 2003, 113: 469-482
[8]Tian Q Y, Sun D H, Zhao M G, Zhang W H. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol, 2007, 174: 322-331
[9]Garica-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enchances the adaptive plant responses against drought stress. Plant Physiol, 2001, 126: 1196-1204
[10]Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant & Cell Physiol, 2005, 46: 1915-1922
[11]He H-Y(何虎翼), He L-F(何龙飞), Li X-F(黎晓峰), Gu M-H(顾明华). Effect of sodium nitroprusside on mitochondrial function of rye and wheat root tip under aluminum stress. Acta Phytophys Sin (植物生理与分子生物学学报), 2006, 32(2): 239-244 (in Chinese with English abstract)
[12]Wang Y-S(王猷胜). The role of exogenous nitric oxide in modulating aluminum-induced oxidative stress in Cassia tora L. PhD Dissertation of Nanjing Agricultural University, 2005, pp 25-29 (in Chinese with English abstract)
[13]Delledone M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions a signal in plant disease resistance. Nature, 1998, 394: 585-588
[14]Crawford N M, Guo F Q. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci, 2005, 10: 195-200
[15]Shandong Peanut Research Institute (山东省花生研究所). Peanut Cultivation in China (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 1982 (in Chinese)
[16]Zhan J(詹洁), Kou R-J(寇瑞杰), Li C-Z(李创珍), He H-Y(何虎翼), He L-F(何龙飞). Effects of aluminum on physiological characteristics of mitochondrial membrane in peanut root tips. Acta Agron Sin (作物学报), 2009, 35(6): 1059-1067 (in Chinese with English abstract)
[17]Zhou R(周蓉), Liao B-T(廖伯寿), Chen X-M(陈小媚), Lei Y(雷永), Li D(李栋), Jin H-B(金华斌). Effect of Al stress on growth and development in peanut genotypes. Chin J Oil Crop Sci (中国油料作物学报), 1998, 20(2): 48-51 (in Chinese with English abstract)
[18]Liao B-T(廖伯寿), Zhou R(周蓉), Lei Y(雷永), Li D(李栋). Evaluation of tolerance to aluminum toxicity in high yielding groundnut genotype. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(1): 38-44 (in Chinese with English abstract)
[19]Yang Q(杨庆), Jin H-B(金华斌). The effect of aluminum stress on N, P and Ca absorpt ion of peanut varieties. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(2): 68-73 (in Chinese with English abstract)
[20]He L-F(何龙飞), Huang Y-M(黄咏梅), Mo C-M(莫长明), Li C-Z(李创珍), Lu S-A(卢升安), Li Z-G(李志刚). Effect of aluminum on membrane lipid peroxidation and protective enzyme activity of peanut root tips. J Guangxi Agric Biol Sci (广西农业生物科学), 2005, 24(3): 220-224 (in Chinese with English abstract)
[21]He L-F(何龙飞), Huang Y-M(黄咏梅), Zhan J(詹洁), Li C-Z(李创珍), Lu S-A(卢升安). Effect of aluminum on membrane peroxidation and organic acid secretion of mitochondria in peanut root tips. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(3): 293-297 (in Chinese with English abstract)
[22]Zhan J(詹洁), Kou R-J(寇瑞杰), He L-F(何龙飞). Effect of aluminum on morphological structure of peanut root tips. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(1): 79-83 (in Chinese with English abstract)
[23]Ruan H-H(阮海华), Shen W-B(沈文飚), Ye M-B(叶茂炳), Xu L-L(徐朗莱). Protection of nitric oxide on salt-induced membrane oxidation in wheat leaves. Chin Sci Bull (科学通报), 2001, 46(23): 1993-1997 (in Chinese)
[24]Ruan H-H(阮海华), Shen W-B(沈文飚), Liu K-L(刘开力), Xu L-L(徐朗莱). Effect of exogenous NO donor on glutathione- dependent antioxidative system in wheat seedling leaf under salt stress. Acta Agron Sin (作物学报), 2005, 31(9): 1144-1149 (in Chinese with English abstract)
[25]Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman M B. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol, 2004, 135: 1630-1641
[26]Zhao L Q, Zhang F, Guo J K, Yang Y L, Li B, Zhang L X. Nitric oxide function as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol, 2004, 134: 849-857
[27]Fan H-F(樊怀福), Guo S-R(郭世荣), Duan J-J(段九菊), Du C-X(杜长霞), Sun J(孙锦). The effect of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristies in cucumber seedlings under NaCl stress. Acta Ecol Sin (生态学报), 2007, 27(2): 546-553 (in Chinese with English abstract)
[28]He B(何斌), Liang J(梁机). Highly sensitive spectrophotometric determination of aluminum in plant and soil water with chromazurol S, cetyltrimethylammonium bromide and alcohol. J Guangxi Agric Univ (广西农业大学学报), 1996, 15(2): 151-154 (in Chinese with English abstract)
[29]Jin H-B(金华斌), Yang Q(杨庆). Identification of tolerance to Al in peanut genotype. Chin J Oil Sci (中国油料作物学报), 1998, 21(4): 51-56 (in Chinese with English abstract)
[30]Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA, 2001, 98: 13454-13459
[31]Wink D A, Mitchell J B. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biol Med, 1998, 25: 434-456
[32]Kelm M, Schäfer S, Dahmann R, Dolu B, Perings S, Decking U K, Schrader J, Strauer B E. Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation. Cardiovasc Res, 1997, 36: 185-194
[33]Delledonne M, Zeier J, Marocco A. Signal interactions between nitric oxide and reaction oxygen intermedidates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA, 2001, 98: 13454-13459
[34]Hong J K, Yun B W, Kang J G, Raja M U, Kwon E, Sorhagen K, Chu C, Wang Y, Loake G J. Nitric oxide function and signalling in plant disease resistance. J Exp Bot, 2008: 59: 147-154
[35]Zhang H-N(张海娜), Gu J-T(谷俊涛), Guo C-J(郭程瑾), Li C-D(李存东), Xiao K(肖凯). The basis of molecular biology of senescence in plants. Acta Pratacult Sin (草业学报), 2009, 18(1): 163-170 (in Chinese with English abstract)
[36]Zhao X-D(赵晓丹), Yang H-Y(杨红玉), Wang Y(王媛). Function of nitric oxide in signal transduction of plant resistance to environment stress. J Anhui Agric Sci (安徽农业科学), 2008, 36(22): 9397-9399, 9499 (in Chinese with English abstract)
[37]Ma W, Xu W, Xu H, Chen Y, He Z, Ma M. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta, 2010, 232: 325-335
[38]Watanabe N, Lam E. Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J, 2006, 45: 884-894
[39]Zheng K, Pan J W, Ye L. Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals. Plant Physiol, 2007, 143: 38-49
[40]Ihara-Ohori Y, Nagano M, Muto S, Uchimiya H, Kawai-Yamada M. Cell death supressor Arabidopsis Bax inhibitor-1 is associated with calmodulin binding and ion homeostasis. Plant Physiol, 2007, 143: 650-660
[41]Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiyab H, Kawai-Yamada M. Funtional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b5. Plant J, 2009, 58: 122-134
[42]Hückelhoven R, Kogel K H. Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance? Planta, 2003, 216: 891-902
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!