欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 650-660.doi: 10.3724/SP.J.1006.2011.00650

• 耕作栽培·生理生化 • 上一篇    下一篇

大豆嫁接体系中砧木或接穗保留叶片数对接穗生长发育的影响

贾贞1,2,吴存祥1,王妙1,孙洪波1,侯文胜1,蒋炳军1,韩天富1,*   

  1. 1中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程,北京100081;2天水师范学院, 甘肃天水 741001
  • 收稿日期:2010-11-03 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 韩天富, E-mail: hantf@mail.caas.net.cn, Tel: 010-82108784
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)(2007AA10Z133),国家重点基础研究发展计划(973计划)项目(2009CB118400),国家自然科学基金项目(30871464)和农业部财政部现代农业产业技术体系建设专项(nycytx-004)资助。

Effects of Leaf Number of Stock or Scion in Graft Union on Scion Growth and Development of Soybean

JIA Zhen1,2,WU Cun-Xiang1,WANG Miao1,SUN Hong-Bo1,HOU Wen-Sheng1,JIANG Bing-Jun1,HAN Tian-Fu1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Tianshui Normal College, Tianshui 741001, China
  • Received:2010-11-03 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 韩天富, E-mail: hantf@mail.caas.net.cn, Tel: 010-82108784

摘要: 以早熟品种黑河27为砧木,晚熟品种自贡冬豆为接穗,通过嫁接并结合去叶处理,创造砧木和接穗叶片数各不相同的嫁接体,观察砧木及接穗的叶片数目对接穗发育的效应,分析大豆叶片中可传导开花诱导物质和抑制物质的有无、作用方式及其对植株发育的影响。结果表明,在长日照(16 h)条件下,与黑河27嫁接,导致自贡冬豆在嫁接后第30天(出苗后第41天)开花,而自体嫁接的自贡冬豆在试验结束前(>120 d)仍未开花,说明在非诱导光照条件(长日照)下,早熟品种黑河27的叶片可产生可传导的开花促进物质,并通过嫁接传导至晚熟品种自贡冬豆的顶端分生组织,诱导其实现成花转变。砧木诱导接穗开花的效应大小与其所保留的叶片数目呈正比,证明上述可传导物质对大豆开花的促进作用存在剂量效应。接穗去叶可导致自身花期提前,花数增加,显示晚熟接穗的叶片在长日照下可产生开花抑制物质。接穗上的花朵和荚果数目与其保留叶片数呈反比,证明开花抑制物质阻止生殖器官的发育,且其作用也具有剂量效应。接穗去叶部位对其成花发育状态亦有一定影响。本文提出,在大豆生长发育过程中,叶片根据光周期信号的变化,调节开花促进物质和开花抑制物质的多少和比例,进而协调营养生长和生殖生长的进度,保证生命周期的完成。

关键词: 大豆, 嫁接, 保留叶片数, 可传导开花物质, 剂量效应

Abstract: To elucidate whether there exist floral stimuli and inhibitors in flowering process, what the underlying mechanism is, and how they regulate plant growth and development, we used the early-maturing soybean cultivar Heihe 27 and late-maturing cultivar Zigongdongdou as stock and scion, respectively to make graf in which scions and stocks had different leaf numbers in combination with defoliation, and to study the effect of leaf number of stock and scion on the reproductive development. Under long-day (16 h) conditions, Zigongdongdou scions flowered at day 30 after being grafted onto Heihe 27 stocks, while its self-grafts failed to flower until the experiment finished (over 120 days). It suggested that under noninductive photoperiods (long-day), the transmissible floral stimuli were produced in the leaves of the early-maturing Heihe 27 and moved to the apical meristem of the late-maturing Zigongdongdou to induce the scion to flower. And the effect of the stock on the flowering of the scion was dependent on the number of leaves remained in the stock. It indicated that there exists an accumulative effect of the transmissible stimuli on soybean flowering. Defoliation on scions promoted flowering and increased flower number, which showed that some floral inhibitors were produced in the leaves of scions under long-day conditions. The number of flowers and pods on scions negatively correlated with the number of remained scion leaves. It indicated that the floral inhibitors suppress the development of the reproductive organs, and the inhibitions have an accumulative effect as well. The node location where scions were defoliated also had an effect on the flowering development. It was proposed that, during the growth and development of soybean, leaves regulate the amount and balance of floral stimuli and inhibitors based on photoperiodic signals, consequently trigger the proceeding from vegetative growth to the reproductive development to ensure the completion of life cycle.

Key words: Soybean, Graft, Maintained leaf number, Transmissible floral substance, Accumulative effect

[1]Knott J E. Effect of localized photoperiod on Spinach. Proc Am Soci Hort Sci, 1934, 31: 152-154
[2]Chailakhyan M Kh. New facts in support of the hormonal theory of plant development. Comp Rend de l'Académie des Sci de l'URSS, 1936, 13: 79-83
[3]Chailakhyan M Kh. Gormonal’naya Teoriya Razvitiya Rastenii (Hormonal Theory of Plant Development), Moscow: Akad. Nauk SSSR, 1937
[4]Lang A. Physiology of flower initiation. Ruhland W. ed, Encycl. Plant Physiol, Berlin: Springer-Verlag, 1965, XV/1: 1380-1536
[5]Zeevaart J A. Physiology of flower formation. Annu Rev Plant Physiol, 1976, 27: 321-348
[6]Hamner K C, Bonner J. Photoperiodism in relation to hormones as factors in floral initiation and development. Bot Gaz, 1938, 100: 388-431
[7]Yukiyoshi O, Roderick W K. The inhibition of flowering by non-induced cotyledons of Pharbitis nil. Plant Cell Physiol, 1990, 31: 129-135
[8]Lang A, Chailakhyan M K, Frolova I A. Promotion and inhibition of flower formation in a dayneutral plant in grafts with a short-day plant and a long-day plant. Proc Natl Acad Sci USA, 1977, 74: 2412-2416
[9]Zeevaart J A. Florigen coming of age after 70 years. Plant Cell, 2006, 18: 1783-1789
[10]Lang A, Melchers G. Die photoperiodische reaktion von Hyoscyamus niger. Planta, 1943, 33: 653-702
[11]Evans L T. Inflorescence initiation in Lolium temulentum L. II. Evidence for inhibitory and promotive photoperiodic processes involving transmissible products. Proc Amer Soc Hort Sci, 1960, 13: 429-440
[12]Thompson P A, Guttridge C G. The role of leaves as inhibitors of flower induction in strawberry. Ann Bot, 1960, 24: 482-490
[13]Raghavan V, Jacobs W P. Studies on the floral histogenesis and physiology of perilla in floral induction in cultured apical buds of P. frutescens. Am J Bot, 1961, 48: 751-760
[14]Weller J L, Murfet I C, Reid J B. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol, 1997, 114: 1225-1236
[15]Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res, 1920, 18: 553-606
[16]Borthwick H A, Parker M W. Photoperiodic perception in Biloxi soybean. Bot Gaz, 1938, 100: 374-387
[17]Hamner K C. Interrelation of light and darkness in photoperiodic induction. Bot Gaz, 1940, 101: 658-687
[18]Parker M W, Hendricks S B, Borthwick H A, Scully N J. Action spectrum for the photoperiodic control of floral initiation of short-day plants. Bot Gaz, 1946, 108: 1-26
[19]Coulter M W, Hamner K C. Photoperiodic flowering response of Biloxi soybean in 72-hour cycles. Plant Physiol, 1964, 39: 848-856
[20]Hamner K C, Takimoto A. Circadian rhythms and plant photoperiodism. Am Nat, 1964, 98: 295-322
[21]Heinze P H, Parker M W, Borthwick H A. Floral initiation in Biloxi soybean as influenced by grafting. Bot Gaz, 1942, 103: 518-530
[22]Kiyosawa S, Kiyosawa K. A study on varietal difference in flowering habits of soybean plants as followed by grafting experiments. Plant Cell Physiol, 1962, 3: 263-273
[23]Kiihl R A S, Hartwig E E, Kilen T C. Grafting as a tool in soybean breeding. Crop Sci, 1977, 17: 181-183
[24]Beaver J S, Nelson R L. Effect of grafting date and maturity of the stock on the flowering behavior of soybean scions. Soybean Genet Newsl, 1981, 8: 37-40
[25]Sinclair T R, Hinson K. Soybean flowering in response to the long-juvenile trait. Crop Sci, 1992, 32: 1242-1248
[26]Cober E R, Curtis D F. Both promoters and inhibitors affected flowering time in grafted soybean flowering-time isolines. Crop Sci, 2003, 43: 886-891
[27]Przepiorkowski T, Martin S K S. The effect of grafting on the flowering of near-isogenic lines of soybean. Crop Sci, 2003, 43: 1760-1763
[28]Jia Z(贾贞), Han T-F(韩天富). Uses of graft techniques in the studies of physiology and breeding of soybean. Soybean Sci (大豆科学). 2010, 29(1): 136-142 (in Chinese with English abstract)
[29]Han T-F(韩天富), Wang J-L(王金陵). Studies on the post flowering photoperiodic responses in soybean. Acta Bot Sin (植物学报), 1995, 37(11): 863-869 (in Chinese with English abstract)
[30]Han T-F(韩天富), Gai J-Y(盖钧镒), Wang J-L(王金陵), Zhou D-X(周东兴). Discovery of flowering reversion in soybean plants. Acta Agron Sin (作物学报), 1998, 24(2): 168-172 (in Chinese with English abstract)
[31]Washburn C F, Thomas J F. Reversion of flowering in Glycine max (Fabaceae). Am J Bot, 2000, 87: 1425-1438
[32]Wu C, Ma Q, Yam K-M, Cheung M-Y, Xu Y, Han T, Lam H-M, Chong K. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max
[L.] Merr.) flowering reversion system. Planta, 2006, 223: 725-735
[33]Battey N, Lyndon R. Reversion of flowering. Bot Rev, 1990, 56: 162-189
[34]Han T, Wu C, Tong Z, Mentreddy R S, Tan K, Gai J. Postflowering photoperiod regulates vegetative growth and reproductive development of soybean. Environ Exp Bot, 2006, 55: 120-129
[35]Fehr W R, Caviness C E. Stages of Soybean Development. Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station. Ames, Iowa: Iowa State University, 1977. pp 1-11
[36]Tang Q-Y(唐启义), Feng M-G(冯明光). DPS Data Processing System—Experimental Design, Statistical Analysis and Data Mining (DPS数据处理系统—实验设计、统计分析及数据挖掘). Beijing: Science Press, 2007 (in Chinese)
[37]Shanmugasundaram S, Wang C-C, Toung T S. Photoperiodic response of flowering in two-branched soybean plants. Bot Gaz, 1979, 140: 4141-4147
[38]Liu H, Wang H, Gao P, Xu J, Xu T, Wang J, Wang B, Lin C, Fu Y F. Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max). J Plant Physiol, 2009, 166: 278-289
[39]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030-1033
[40]Jaeger K E, Wigge P A. FT protein acts as a long-range signal in Arabidopsis. Curr Biol, 2007, 17: 1050-1054
[41]Mathieu J, Warthmann N, Kuttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol, 2007, 17: 1055-1060
[42]Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol, 2008, 49: 1645-1658
[43]Tamaki S, Matsuo S, Wong H L, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316: 1033-1036
[44]Lin M K, Belanger H, Lee Y J, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen R A, Phinney B, Lough T J, Lucas W J. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell, 2007, 19: 1488-1506
[45]Lifschitz E, Eshed Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J Exp Bot, 2006, 57: 3405-3414
[46]Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286: 1960-1962
[47]Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA, 2005, 102: 7748-7753
[48]Ahn J H, Miller D, Winter V J, Banfield M J, Lee J H, Yoo S Y, Henz S R, Brady R L, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J, 2006, 25: 605-614
[49]Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965
[50]Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F. Cloning and molecular analysis of the Arabidopsis gene TERMINAL FLOWER 1. Mol Gen Genet, 1997, 254: 186-194
[51]Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield M J, Rameau C. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell, 2003, 15: 2742-2754
[52]Pillitteri L J, Lovatt C J, Walling L L. Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol, 2004, 135: 1540-1551
[53]Conti L, Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 2007, 19: 767-778
[54]Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210
[55]Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Nat Acad Sci USA, 2010, 107: 8563-8568
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!