欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 670-676.doi: 10.3724/SP.J.1006.2011.00670

• 耕作栽培·生理生化 • 上一篇    下一篇

植物生长调节剂对水稻分蘖芽生长和内源激素变化的调控效应

刘杨,丁艳锋,王强盛,李刚华,许俊旭,刘正辉,王绍华*   

  1. 刘杨,丁艳锋,王强盛,李刚华,许俊旭,刘正辉,王绍华*
  • 收稿日期:2010-08-02 修回日期:2011-01-05 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 王绍华, E-mail: wangsh@njau.edu.cn, Tel: 025-84396475
  • 基金资助:

    本研究由国家自然科学基金项目(31071364), 江苏省自然科学基金项目(BK2010449)和高等学校博士学科点基金项目(20100097110032)资助。

Effect of Plant Growth Regulators on the Growth of Rice Tiller Bud and the Changes of Endogenous Hormones

LIU Yang,DING Yan-Feng,WANG Qiang-Sheng,LI Gang-Hua,XU Jun-Xu,LIU Zheng-Hui,WANG Shao-Hua*   

  1. Agronomy College, Nanjing Agricultural University / Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing 210095, China
  • Received:2010-08-02 Revised:2011-01-05 Published:2011-04-12 Published online:2011-02-24
  • Contact: 王绍华, E-mail: wangsh@njau.edu.cn, Tel: 025-84396475

摘要: 以扬稻6号和南粳44为材料,研究了外源ABA、GA3和NAA对水稻分蘖芽生长的影响及其与内源激素的关系。结果表明,外源GA3和NAA可以完全抑制分蘖芽的生长,而外源ABA只是减缓了分蘖芽的生长速率而没有完全抑制其生长。外源GA3和NAA均提高了分蘖节和分蘖芽中ABA含量,抑制了分蘖节和分蘖芽中Z+ZR含量的提高,而且外源GA3还提高了分蘖节中IAA含量,另外,IAA和Z+ZR含量的变化早于ABA含量的变化。分析试验结果表明IAA、ABA和Z+ZR三种内源激素与水稻分蘖芽生长密切相关,IAA和Z+ZR是生长的主要调控因素,而ABA不是,外界因素对分蘖芽生长的调控主要通过调控这3种激素实现。

关键词: 水稻, 分蘖芽, 生长, 激素

Abstract: Hormones have substantial effect on tiller bud growth of rice. However, little is known on the relation between endogenous hormonal changes and the growth of rice tiller bud induced by exogenous hormones. In present study, two rice cultivars (Yangdao 6 and Nanjing 44) were used to investigate the effect of exogenous ABA, GA3 and NAA on tiller bud outgrowth and the changes of endogenous hormones. The results showed that exogenous GA3 and NAA completely inhibited the tiller bud growth, while applied ABA did not, but ABA slowed the growth rate of it. Both exogenous GA3 and NAA increased the ABA contents and decreased the Z+ZR contents in tiller node and tiller bud, and exogenous GA3 increased the IAA content in tiller node, and IAA and Z+ZR changed earlier than ABA. In conclusion, IAA and Z+ZR may play key roles in regulating the growth of rice tiller bud, while ABA may not, although ABA can affect the growth velocity of tiller bud; the effect of exogenous hormones on rice tiller bud growth is through regulating the contents of ABA, IAA and CTK in plants.

Key words: Rice, Tiller Bud, Outgrowth, Hormone

[1]Li X-Y(李学勇), Qian Q(钱前), Li J-Y(李家洋). Progress in elucidating the molecular mechanism of rice tillering. Bull Chin Acad Sci (中国科学院院刊), 2003, 18(4): 274–276 (in Chinese with English abstract)
[2]Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618–621
[3]Ding Y-F(丁艳锋). Regulations of Rice Population Quality by Nitrogen Nutrition. PhD Dissertation of Nanjing Agricultural University, 1997 (in Chinese with English abstract)
[4]Tang J-B(唐家斌), Wan Y(万勇), Wang W-M(王文明), Ma B-Q(马炳田), Liu Y(刘勇), Li H-J(李浩杰), Xia H-A(夏红爱), Li P(李平), Zhu L-H(朱立煌). Genetic research and genetic supports of a few-tiller mutant rice. Sci China (Ser C: Life Sci)(中国科学·C辑), 2001, 31(3): 208–212 (in English)
[5]Wang Y-S(王永胜), Wang J(王景), Duan J-Y(段静雅), Wang J-F(王金发), Liu L-S(刘良式). Isolation and genetic research of a dwarf tillering mutant rice. Acta Agron Sin(作物学报), 2002, 28(2): 235–239 (in Chinese with English abstract)
[6]Ding Y-F(丁艳锋), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Relationship between emergence of tiller and nitrogen concentration of leaf blade of leaf sheath on specific node of rice. J Nanjing Agric Univ (南京农业大学学报), 1995, 18(4): 14–18 (in Chinese with English abstract)
[7]Jiang P-Y(蒋彭炎), Hong X-F(洪小富), Feng L-D(冯来定), Ma Y-F(马跃芳), Xu Z-F(徐志福), Ni Z-R(倪竹如), Liu Z-H(刘智宏). On tiller utilization from the distribution trend of assimilation product in rice individuals. Acta Agric Zhejiang (浙江农业学报), 1994, 6(4): 209–213 (in Chinese with English abstract)
[8]Chatfield S P, Stirnberg P, Forde B G, Leyser O. The hormonal regulation of axillary bud growth in Arabidopsis. Plant J, 2000, 24: 159–169
[9]Shimizu S S, Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiol, 2001, 127: 1405–1413
[10]Wang G, Romheld V, Li C, Bangerth F. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants. J Plant Physiol, 2006, 163: 591–600
[11]Leopold A. The control of tillering in grasses by auxin. Am J Bot, 1949, 36: 437–440
[12]Langer R, Prasad P, Laude H. Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.). Ann Bot, 1973, 37: 565–571
[13]Hong X-F(洪晓富), Jiang P-Y(蒋彭炎), Zheng Z-S(郑寨生), Lu C-Y(卢昌银), Wang C-M(王撮明). Relationships between employ GA3 during tillering stage and promote the panicle bearing tiller rate. J Zhejiang Agric Sci (浙江农业科学), 1998, (1): 3–5 (in Chinese)
[14]Ma X-L(马兴林), Liang Z-X(梁振兴). Studies on the effects of endogeneous hormones in winter wheat tillers during the course of senescence. Acta Agron Sin (作物学报), 1997, 23(2): 200-–207 (in Chinese with English abstract)
[15]Zhou C-F(周传凤), Li Y-R(李扬瑞), Yang L-T(杨丽涛). Effect of ethephon sprayed at early tillering stage on the activities of peroxidase, IAA oxidase and acid invertase in sugarcane in correlation to tillering. Guihaia (广西植物), 2007, 27(4): 649–652 (in Chinese with English abstract)
[16]Yoshida S(吉田昌一). Laboratory Manual for Physiological Studies of Rice (水稻生理学实验手册). Beijing: Science Press, 1975. pp 57–64 (in Chinese)
[17]Wu S-R (吴颂如), Chen W-F(陈婉芬), Zhou X(周燮). Enzyme linked immunosorbent assay for endogenous plant hormones. Plant Physiol Commun (植物生理学通讯), 1988, (5): 53–57 (in Chinese with English abstract)
[18]Bao S-D(鲍士旦). Soil and Agricultural Chemistry Analysis (土壤农化分析), 3rd edn. Beijing: China Agriculture Press, 2000. pp 264–268 (in Chinese)
[19]Bangerth F. Response of CK concentration in the xylem exudates of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. Planta, 1994, 194: 439–442
[20]Schmulling T. New insights into the functions of CKs in plant development. J Plant Growth Regul, 2002, 21: 40–49
[21]anaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J, 2006, 45: 1028–1036
[22]Liu Y(刘杨), Wang Q-S(王强盛), Ding Y-F(丁艳锋), Liu Z-H(刘正辉), Li G-H(李刚华), Wang S-H(王绍华). Endogenous phytohormone changes in the release of dormant tillering bud in rice. Acta Agron Sin (作物学报), 2009, 35(2): 356–362 (in Chinese with English abstract)
[23]Werner T, Motyka V, Laueou V, Smets R, Van Onekelen H, Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 2003, 15: 2532–2550
[24]Cline M G. Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Ann Bot, 1996, 78: 256–266
[25]Cline M G, Chatfield S P, Leyser O. NAA restores apical dominance in the axr3-1 mutant of Arabidopsis thaliana. Ann Bot, 2001, 87: 61–65
[26]Emery R J N, Longnecler N E, Atkins C A. Branch development in Lupinus angustifolius L.: II. Relationship with endogenous ABA, IAA and CKs in axillary and main stem buds. J Exp Bot, 1998, 49: 555–562
[27]Shimizu-Sato S, Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiol, 2001, 127: 1405–1413
[28]Woodward E, Marshall C. Effects of Plant growth regulators and nutrient supply on tiller bud outgrowth in barley (Hordeum distichum L.). Ann Bot, 1998, 61: 347–354
[29]Ma B, Smith D. Chlormequat and ethephon timing and grain production of spring barley. Agron J, 1992, 84: 934–939
[30]Zhang Z-D(张祖德). Research of chemical regulation on promote the panicle bearing tiller rate of rice. Fujian Sci Tech Rice Wheat (福建稻麦科技), 2006, (6): 10–13 (in Chinese)
[31]Tucker D. Apical dominance in the tomato: the possible roles of auxin and abscisic acid. Plant Sci Lett, 1978, 12: 273–278
[32]Cline M G, Oh C. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance. Ann Bot, 2006, 98: 891–897
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[15] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!