欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1077-1086.doi: 10.3724/SP.J.1006.2011.01077

• 耕作栽培·生理生化 • 上一篇    下一篇

棉株果枝部位、温光复合因子及施氮量对纤维伸长的影响

赵文青,孟亚利,陈美丽,李文峰,周治国*   

  1. 南京农业大学/农业部南方作物生理生态重点开放实验室/江苏省信息农业高技术研究重点实验室,南京 210095
  • 收稿日期:2010-11-02 修回日期:2011-03-06 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 周治国, E-mail: giscott@njau.edu.cn, Tel: 025-84396813
  • 基金资助:

    本研究由国家自然科学基金项目(31071763, 30771277, 30771279)资助。

Effects of Fruiting Branch Position, Temperature-Light Factors and Nitrogen Rates on Cotton (Gossypium hirsutum L.) Fiber Elongation

ZHAO Wen-Qing,MENG Ya-Li,CHEN Mei-Li,LI Wen-Feng,ZHOU Zhi-Guo*   

  1. Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture / Hi-Tech Key Laboratory of Information Agriculture / Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-11-02 Revised:2011-03-06 Published:2011-06-12 Published online:2011-04-12
  • Contact: 周治国, E-mail: giscott@njau.edu.cn, Tel: 025-84396813

摘要: 以杂交棉(科棉1号)和常规棉(美棉33B)品种为材料,设置异地分期播种和施氮量试验,使棉株不同果枝部位棉铃处于相同环境条件下或相同果枝部位棉铃处于不同环境条件下,研究棉株果枝部位、温光复合因子及施氮量对纤维伸长的影响。结果表明, 在相同环境条件下,棉株中部果枝铃的纤维长度虽稍高于其他部位,但纤维伸长动态变化及最终纤维长度在不同果枝部位间的差异均未达显著水平。棉纤维伸长发育期的累积辐热积PTP可综合温光复合因子的效应,其与棉纤维最大伸长速率Vmax呈极显著线性正相关,与纤维快速伸长持续期T呈极显著线性负相关,与棉纤维长度理论最大值Lenm呈二次曲线函数关系,可以作为表征棉纤维伸长发育温光复合因子的指标。当棉纤维伸长发育期内PTP在335 MJm2左右时,Lenm最大(科棉1号、美棉33B分别为30.94、30.31 mm),Vmax在1.3 mm d–1左右,T在16 d左右。氮素水平与温光复合因子对纤维长度的影响存在补偿效应,随施氮量的增加,棉纤维长度达到最大值时对应的PTP减小。当棉纤维伸长发育期内PTP达到240 MJm2时(科棉1号、美棉33B分别为237.6、241.6 MJm2),240 kg N hm2施氮量下的棉铃对位叶叶氮浓度(NA)更适宜棉纤维伸长;PTP低于此值时,增加施氮量(480 kg N hm2)可减小因累积辐热积降低而造成的棉纤维长度缩短的幅度。

关键词: 棉花, 纤维长度, 果枝部位, 温光复合因子, 叶氮浓度

Abstract: Cotton fiber length is one of the important criteria of cotton quality, and fiber elongation is influenced by many factors. To study effect of fruiting-branch position, temperature-light factor and nitrogen rates on dynamic changes of cotton fiber length, we carried out the field experiments in Nanjing (118º50′E, 32º02′N, middle lower reaches of Yangtze River Valley) and Xuzhou (117°11′E, 34°15′N, Yellow River Valley). Cotton cultivars of Kemian 1 and NuCOTN 33B were used. Two sowing dates and three nitrogen application levels were applied, thus cotton fiber developing process can be arranged at different fruiting-branch position and ecological conditions. The results showed that cotton bolls developed in the middle-branch position produced longer fiber than that in lower- and upper-branch positions, but the dynamic changes of fiber length were not significant among different fruiting branches. PTP can be an indicator assessing temperature-light effect during cotton fiber elongation period. The maximum elongation rate (Vmax) and duration of fiber speedy elongation period (T) were linearly corelated with PTP, while the theoretical maximum of cotton fiber length (Lenm) was quadratic with PTP. The longest Lenm (30.94 and 30.31 mm for Kemian 1 and NuCOTN 33B, respectively) was obtained at PTP of 335 MJm2 in cotton fiber elongation period (333.3 and 337.9 MJ·m2 for Kemian 1 and NuCOTN 33B,respectively), when Vmax was 1.3 mm d–1 and T was 16 d. There exists an interaction between N fertilization and PTP on fiber elongation. As N fertilization increased, values of PTP for obtaining the longest Lenm decreased. And when PTPwas greater than 240 MJm2 (237.6 and 241.6 MJm2 for Kemian 1 and NuCOTN 33B, respectively), NA under 240 kg N ha1 was more suitable for the elongation of cotton fiber; while PTP was less than that value, NA under 480 kg N ha1 was more appropriate.

Key words: Gossypium hirsutum L., Fiber length, Fruiting-branch position, Temperature-light factor, Leaf nitrogen concentration

[1]Braden C A, Smith C W. Fiber length development in near-long staple Upland cotton. Crop Sci, 2004, 44: 1553–1559
[2]Thaker V S, Saroop S, Vaishnav P P, Singh Y D. Genotypic variations and influence of diurnal temperature on cotton fibre development. Field Crops Res, 1989, 22: 129–141
[3]Davidonis G H, Johnson A S, Landivar J A, Fernandez C J. Cotton fiber quality is related to boll location and planting date. Agron J, 2004, 96: 42–47
[4]Yeates S J, Constable G A, McCumstie T. Irrigated cotton in the tropical dry season: III. impact of temperature, cultivar and sowing date on fibre quality. Field Crops Res, 2010, 116: 300–307
[5]Jones M A, Wells R. Fiber yield and quality of cotton grown at two divergent population densities. Crop Sci, 1998, 38: 1190–1195
[6]Liakatas A, Roussopoulos D, Whittington W J. Controlled-temperature effects on cotton yield and fibre properties. J Agric Sci, 1998, 130: 463–471
[7]Pettigrew W T. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci, 2008, 48: 278–285
[8]Reddy K, Davidonis G, Johnson A, Vinyard B. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J, 1999, 91: 851–858
[9]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci, 2001, 41: 1108–1113
[10]Wang Q-C(王庆材), Sun X-Z(孙学振), Song X-L(宋宪亮), Guo Y(郭英), Li Y-J(李玉静), Chen S-Y(陈淑义), Wang Z-L(王振林). Effect of shading at different developmental stages of cotton bolls on cotton fibre quality. Acta Agron Sin (作物学报), 2006, 32(5): 671–675 (in Chinese with English abstract)
[11]Pettigrew W T. Source-to-sink manipulation effects on cotton fiber quality. Agron J, 1995, 87: 947–952
[12]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages: growth, lint yield and fibre quality. Expl Agric, 2000, 36: 27–39
[13]Bauer P J, Foulk J A, Gamble G R, Sadler E J. A comparison of two cotton cultivars differing in maturity for within-canopy fiber property variation. Crop Sci, 2008, 49: 651–657
[14]Shan S-H(单世华), Shi P(施培), Sun X-Z(孙学振), Zhou Z-G(周治国), Bian D-C(边栋材). Effect of anthesis date and fruiting branches on cotton fiber qualities and super-molecular structure. Sci Agric Sin (中国农业科学), 2002, 35(2): 163–168 (in Chinese with English abstract)
[15]Girma K, Teal R K, Freeman K W, Boman R K, Raun W R. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers. J Cotton Sci, 2007, 11: 12–19
[16]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron, 2006, 24: 282–290
[17]Ling Q-H(凌启鸿). Crop Population Quality (作物群体质量). Shanghai: Shanghai Scientific & Tecnical Publishers, 2000
[18]Ma R-H(马溶慧), Zhou Z-G(周治国), Wang Y-H(王友华), Feng Y(冯营), Meng Y-L(孟亚利). Relationship between nitrogen concentration in the subtending leaf of cotton boll and fiber quality indices. Sci Agric Sin (中国农业科学), 2009, 42(3): 833–842 (in Chinese with English abstract)
[19]Zhang W-J(张文静), Hu H-B(胡宏标), Chen B-L(陈兵林), Wang Y-H(王友华), Li W-F(李文峰), Zhou Z-G(周治国). Relationship between genotypic difference of physiological characteristics in leaf subtending boll and boll weight forming. Cotton Sci (棉花学报), 2007, 19(4): 296–303 (in Chinese with English abstract)
[20]Xue X-P(薛晓萍), Chen B-L(陈兵林), Guo W-Q(郭文琦), Zhou Z-G(周治国), Zhang L-J(张丽娟), Wang Y-L(王以琳). Dynamic quantitative model of critical nitrogen demand of cotton. Chin J Appl Ecol (应用生态学报), 2006, 17(12): 2363–2370 (in Chinese with English abstract)
[21]Li W, Zhou Z, Meng Y, Xu N, Fok M. Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China. Field Crops Res, 2009, 112: 131–140
[22]Chen B-L(陈兵林), Cao W-X(曹卫星), Zhou Z-G(周治国). Simulation and validation of dry matter accumulation and distribution of cotton bolls at different flowering stages. Sci Agric Sin (中国农业科学), 2006, 39(3): 487–493 (in Chinese with English abstract)
[23]Zhou Q(周青), Wang Y-H(王友华), Xu N-Y(许乃银), Zhang C-X(张传喜), Zhou Z-G(周治国), Chen B-L(陈兵林). Effects of air temperature on enzyme activities of cotton plants related to saccharide metabolism of cotton fiber. Chin J Appl Ecol (应用生态学报), 2009, 20(1): 149–156 (in Chinese with English abstract)
[24]Chen G-W(陈冠文), Yu Y(余渝). Preliminary study on the temperature-light effects on boll development. Cotton Sci (棉花学报), 2001, 13(1): 63–64 (in Chinese with English abstract)
[25]Sequeira R A, Cochran M, El-Zik K M, Stone N D, Makela M E. Inclusion of plant structure and fiber quality into a distributed delay cotton model to improve management and optimize profit. Ecol Mod, 1994, 71: 161–186
[26]Wang Y-H(王友华), Chen B-L(陈兵林), Bian H-Y(卞海云), Jiang G-H(蒋光华), Zhang W-J(张文静), Hu H-B(胡宏标), Shu H-M(束红梅), Zhou Z-G(周治国). Synergistic effect of temperature and cotton physiological age on fiber development. Acta Agron Sin (作物学报), 2006, 32(11): 1671–1677 (in Chinese with English abstract)
[27]Li Y-X(李永秀), Luo W-H(罗卫红), Ni J-H(倪纪恒), Chen Y-S(陈永山), Xu G-B(徐国彬), Jin L(金亮), Dai J-F(戴剑锋), Chen C-H(陈春宏), Bu C-X(卜崇兴). Simulation of greenhouse cucumber leaf area based on radiation and thermal effectiveness. J Plant Ecol (植物生态学报), 2006, 30(5): 861–867 (in Chinese with English abstract)
[28]Roussopoulos D, Liakatas A, Whittington W J. Cotton responses to different light-temperature regimes. J Agric Sci, 1998, 131: 277–283
[29]Feng Y(冯营), Zhao X-H(赵新华), Wang Y-H(王友华), Ma R-H(马溶慧), Zhou Z-G(周治国). Responses of carbohydrate metabolism to nitrogen in cotton fiber development and its relationships with fiber strength formation. Sci Agric Sin (中国农业科学), 2009, 42(1): 93–102 (in Chinese with English abstract)
[30]Ma R-H(马溶慧), Xu N-Y(许乃银), Zhang C-X(张传喜), Li W-F(李文峰), Feng Y(冯营), Qu L(屈磊), Wang Y-H(王友华), Zhou Z-G(周治国). Physiological mechanism of sucrose metabolism in cotton fiber and fiber strength regulated by nitrogen. Acta Agron Sin (作物学报), 2008, 34(12): 2143–2151 (in Chinese with English abstract)
[31]Grindlay D J C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area. J Agric Sci, 1997, 128: 377–396
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!