欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1342-1350.doi: 10.3724/SP.J.1006.2011.01342

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

无芥酸甘蓝型油菜十八碳不饱和脂肪酸含量的QTL定位

杨燕宇,杨盛强,陈哲红,官春云,陈社员,刘忠松   

  1. 湖南农业大学油料作物研究所 / 国家油料中心湖南分中心, 湖南长沙 410128
  • 收稿日期:2011-01-28 修回日期:2011-04-26 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 刘忠松, E-mail: zsliu48@sohu.com
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101603)资助。

QTL Analysis of 18-C Unsaturated Fatty Acid Contents in Zero-Erucic Rapeseed (Brassica napus L.)

YANG Yan-Yu,YANG Sheng-Qiang,CHEN Zhe-Hong,GUAN Chun-Yun,CHEN She-Yuan,LIU Zhong-Song   

  1. Oilseed Crops Institute, Hunan Agricultural University, Changsha 410128, China
  • Received:2011-01-28 Revised:2011-04-26 Published:2011-08-12 Published online:2011-06-13
  • Contact: 刘忠松, E-mail: zsliu48@sohu.com

摘要: 用无芥酸的高油酸油菜品系HOP和低油酸油菜品种湘油15为父母本构建含189单株的F2代作图群体。F2代单粒种子播种前采用半粒取样,F2代单株种子采用混合取样,进行脂肪酸含量的气相色谱分析。统计检测显示这两种方法测定结果极显著相关,各种脂肪酸含量之间大部分也呈显著相关。用该群体构建含342个SSR标记的遗传连锁图并对18碳不饱和脂肪酸含量进行了QTL定位。在A5和C5连锁群上各检测到1个油酸含量主效QTL,其中位于A5连锁群的QTL效应值较大,且与FAD2基因紧密连锁;位于C5连锁群的QTL为首次报道,与之紧密连锁的标记在A5 连锁群QTL区域有同源标记,说明可能与位于C5的FAD2基因有关。用两种方法测定性状值都能检测到这2个QTL,且效应值比较接近,共能解释60%~70%油酸含量变异。由于油酸含量与亚油酸之间高度相关,定位在A5和C5的油酸含量QTL也被确认为亚油酸含量主效QTL,但利用单株法测定的性状值能在A4连锁群上再发现1个LOD值较低的亚油酸含量QTL。两种测定法能比较一致地在A4、A5和C4连锁群上检测到3个亚麻酸含量主效QTL,共能解释72%~80%亚麻酸含量变异。用半粒法能在A4连锁群还能检测到1个解释变异度为12.42%的较小LOD值的亚麻酸含量QTL。

关键词: 甘蓝型油菜, 脂肪酸含量, SSR, QTL定位

Abstract: Rapeseed oil is a major edible oil source for human consumption. Its quality depends on its fatty acid composition. Among fatty acids, 18-C unsaturated fatty acids are most crucial. QTL mapping will pave a way for molecular breeding and cloning genes for fatty acid biosynthesis in rapeseed. In this study, the zero-erucic rapeseed parents HOP (high oleic) and Xiangyou 15 (low oleic) were used to construct a F2 population consisting of 189 individual plants. The construction of a genetic map containing 342 SSR markers and the mapping of QTLs for the 18-C unsaturated fatty acid contents were carried out. Two sampling methods, i.e., half-seed sampling from F2 single seeds and bulk-seed sampling from F2 individual plants (F3 seeds), were used to determine the fatty acid contents by gas chromatography. The correlations of the fatty acid contents between the two sampling methods as well as most of the correlations between these fatty acids were significant. Totally two major QTLs for oleic acid content were detected in the linkage groups (LG) of A5 and C5, which could explain 60-70% of the variance for oleic acid content. The superior one of the two QTLs was mapped in LG A5 and tightly linked to the FAD2 gene. The other one which located in LG C5 was a major QTL newly found for oleic acid content. The marker closest to this QTL was found to be homologous to the marker on the LG A5, implying the QTL on C5 was also associated with the FAD2 gene. Consistent effect of the two QTLs was confirmed using oleic acid contents determined by the two sampling methods. The QTLs for oleic acid content was found to be the ones for the linoleic acid content, which was consistent with the high significant correlation between the two fatty acids. Nevertheless, one more minor QTL for linoleic acid content with a low LOD value was shown on LG A4 using the bulk-seed method. For linolenic acid content, three major QTLs on LG A4, A5, and C4, respectively, were detected consistently using the determinations of the two sampling methods, totally explaining 72-80% of the variance for linolenic acid content. Furthermore, another QTL with a low LOD value, only accounting for 12.42% of variance was detected on LG A4 using the half-seed method.

Key words: Brassica napus, SSR, Fatty acid content, QTL mapping

[1]Chen J L, Beversdorf W D. Fatty acid inheritance in microspore-derived populations of spring rapeseed (Brassica napus L.). Theor Appl Genet, 1990, 80: 465-469
[2]Sasongko N, Möllers C. Toward increasing erucic acid content in oilseed rape (Brassica napus L.) through the combination with genes for high oleic acid. J Am Oil Chem Soc, 2005, 82: 445-449
[3]Zhao J, Dimov Z, Becker H, Ecke W, Möllers C. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed, 2008, 21: 115-125
[4]Rajcan I, Kasha K J, Kott L S, Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181
[5]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-48
[6]Zhang J-F(张洁夫), Qi C-K(戚存扣), Pu H-M(浦惠明), Chen S(陈松), Chen F(陈锋), Gao J-Q(高建芹), Chen X-J(陈新军), Gu H(顾慧), Fu S-Z(傅寿仲). QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agron Sin (作物学报), 2008, 34: 54-60 (in Chinese with English abstract)
[7]Thormann C, Romero J, Mantet J, Osborn T. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93: 282-286
[8]Jagannath A, Sodhi Y S, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma P K, Pradhan A K, Pental D. Eliminating expression of erucic acid-encoding loci allows the identification of 'hidden' QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet, 2011, DOI: 10.1007/s00122-010-1515-2
[9]Smooker A M, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet, 2011, DOI: 10.1007/s00122-010-1512-5
[10]Hu X, Sullivan-Gilbert M, Gupta M, Thompson S. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497-507
[11]Laga B, Seurinck J, Verhoye T, Lambert B. Molecular breeding for high oleic and low linolenic fatty acid composition in Brassica napus. Pflanzenschutz-Nachrichten Bayer, 2004, 54: 87-92
[12]Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000, 101: 897-901
[13]Tanhuanpää P, Vilkki J, Vihinen M. Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed, 1998, 4: 543-550
[14]Mikolajczyk K, Dabert M, Karlowski W M, Spasibionek S, Nowakowska J, Cegielska-Taras T, Bartkowiak-Broda I. Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breed, 2009, 129: 465-580
[15]Scheffler J A, Sharpe A G, Schmidt H, Sperling P, Parkin I A P, Lühs W, Lydiate D J, Heinz E. Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet, 1997, 94: 583-591
[16]Porebski S, Bailey L, Baum B. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8-15
[17]Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet, 2009, 118: 1121-1131
[18]Lowe A, Moule C, Trick M, Edwards K. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet, 2004, 108: 1103-1112
[19]Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514-1523
[20]Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179: 1547-58
[21]Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, 173: 309-319
[22]Kim H, Choi S R, Bae J, Hong C P, Lee S Y, Hossain M J, Van Nguyen D, Jin M, Park B S, Bang J W, Bancroft I, Lim Y P. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics, 2009, 10: 432
[23]Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet, 2007, 115: 777-92
[24]Yu Q, Tong E, Skelton R L, Bowers J E, Jones M R, Murray J E, Hou S, Guan P, Acob R A, Luo M C, Moore P H, Alam M, Paterson A H, Ming R. A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics, 2009, 10: 371
[25]Smith L B, King G J. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breed, 2000, 6: 603-613
[26]Iniguez-Luy F, Voort A, Osborn T. Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet, 2008, 117:977-985
[27]Iniguez-Luy F L, Lukens L, Farnham M W, Amasino R M, Osborn T C. Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet, 2009, 120: 31-43
[28]Kaur S, Cogan N, Ye G, Baillie R, Hand M, Ling A, McGearey A, Kaur J, Hopkins C, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith K, Forster J, Spangenberg G. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor Appl Genet, 2009, 120: 71-83
[29]Tanhuanpää P K, Vilkki J P, Vilkki H J. Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet, 1996, 92: 952-956
[30]Javidfar F, Ripley V L, Roslinsky V, Zeinali H, Abdmishani C. Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (Brassica napus). Plant Breed, 2006, 125: 65-71
[31]Van Ooijen J W. JoinMap 4: Software for the calculation of genetic linkage maps in experimental populations. Kyazma B V. Wageningen, Netherlands, 2006, http://www.kyazma.nl/index.php/mc.JoinMap
[32]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University Raleigh, NC, 2010, http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
[33]Coonrod D, Brick M, Byrne P, DeBonte L, Chen Z. Inheritance of long chain fatty acid content in rapeseed (Brassica napus L.). Euphytica, 2008, 164: 583-592
[34]Panjabi P, Jagannath A, Bisht N, Padmaja K, Sharma S, Gupta V, Pradhan A, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics, 2008, 9: 113
[35]Xiao G(肖钢), Zhang Z-Q(张振乾), Wu X-M(邬贤梦), Tan T-L(谭太龙), Guan C-Y(官春云). Cloning and characterization of six oleic acid desaturase pseudogenes. Acta Agron Sin (作物学报), 2010, 36(3): 435-441 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[12] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[15] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!