欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1676-1682.doi: 10.3724/SP.J.1006.2011.01676

• 耕作栽培·生理生化 • 上一篇    下一篇

花生种子脂肪酶活力定量测定及其与储藏特性的相关性

高奇1,3,张瑛1,2,*,刘泽1,张正竹3,*,吴跃进2,禹山林4,张琛3,滕斌1,吴敬德1,蒋岚1   

  1. 1安徽省农业科学院水稻研究所 / 安徽省水稻遗传育种重点试验室,安徽合肥 230031; 2中国科学院安徽省离子束生物工程学重点试验室,安徽合肥 230031; 3安徽农业大学农业部茶及药用植物安全生产重点开放试验室, 安徽合肥 230036; 4山东省花生研究所, 山东青岛 266100
  • 收稿日期:2011-02-12 修回日期:2011-05-27 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 张瑛, E-mail: zhangying56888@sina.com; 张正竹, E-mail: zzz@ahau.edu.cn, Tel: 0551-2160182, 0551-2160453
  • 基金资助:

    本研究由安徽省自然科学基金资助项目(11040606M97), 安徽省优秀青年基金项目(08040106802)和安徽省水稻遗传育种重点试验室开放基金项目(SD2009-4)资助。

Quantitative Determination of Peanut Seed Lipase Activity and Its Correlation with Storage Characteristics

AO Qi1,3,ZHANG Ying1,2,*,LIU Ze1,ZHANG Zheng-Zhu3,*,WU Yue-Jin2,YU Shan-Lin4,ZHANG Chen3,TENG Bin1,WU Jing-De1,JIANG Lan1   

  1. 1 Rice Research Institute, Anhui Academy of Agricultural Sciences / Anhui Province Key Laboratory of Rice Genetics and Breeding, Hefei 230031, China; 2 Anhui Province Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei 230031, China; 3 Tea and Herbs Key Laboratory Safety, Anhui Agricultural University, Ministry of Agriculture, Hefei 230036, China; 4 Shandong Peanut Research Institute, Qingdao 266100, China
  • Received:2011-02-12 Revised:2011-05-27 Published:2011-09-12 Published online:2011-06-28
  • Contact: 张瑛, E-mail: zhangying56888@sina.com; 张正竹, E-mail: zzz@ahau.edu.cn, Tel: 0551-2160182, 0551-2160453

摘要: 对已有水稻脂肪酶活力比色测定方法进一步修改和优化,建立了花生脂肪酶活力定量测定方法,并确定取样量5 mg、底物浓度30 mg mL–1为最适试验条件,该方法具有精确性好、特异性强、重复性好等特点。利用该方法检测216份花生种质资源的脂肪酶活性,表明不同材料间差异极显著(P<0.001)。试验筛选出酶活力高低差异显著的材料10份(高低各5份),并以其中2份高脂肪酶活性和2份低脂肪酶活性材料进行高温、高湿人工加速老化试验,结果表明,随老化时间延长,高脂肪酶活性材料发芽率下降较快,而低脂肪酶活性材料发芽率下降较慢,花生脂肪酶活力与其种子活力呈负相关(相关系数为–0.8875)。该结果为进一步深入研究脂肪酶对花生储藏劣变的影响提供了参考。

关键词: 花生, 脂肪酶活力, 定量测定, 储藏特性

Abstract: Based on colorimetric determination method reported for rice lipase, we established a new method improving and optimizing the measurement for peanut seed lipase activity, with the optimum sampling amount of 5 mg and substrate concentration of 30 mg mL–1. The method was validated to be accurate, specific and well repeatable. The lipase activities of 216 peanut germplasm resources were detected, with significant difference (P<0.001) among them. Five with higher lipase activity and five with lower lipase activity were screened, and each two of which were selected to perform an accelerated-aging experiment under high temperature and high moisture. The results indicated that, with extension of storage time, the germination rate of peanut with lower lipase activity decreased slowly, while that of peanut with higher lipase decreased rapidly, showing a negative correlation betweenseed vigor and peanut lipase activity (correlation coefficient was –0.8875). The study provides a reference for the further research in the effect of lipase on peanut storage characteristics.

Key words: Peanut, Lipase activity, Quantitative determination, Storage characteristics

[1]Shan S-H(单世华), Wang S-B(万书波), Qiu Q-S(邱庆树), Li C-J(李春娟), Xu T-T(许婷婷), Gong Q-X(宫清轩). Quality evaluation on groundnut germplasm resources in China. Shandong Agric Sci (山东农业科学), 2007, (6): 40–42 (in Chinese with English abstract)
[2]Tang S(汤松), Yu S-L(禹山林), Liao B-S(廖伯寿), Zhang X-Y(张新友), Sun H-Y(孙海艳). Industry status, existing problems and development strategy of peanut in China. J Peanut Sci (花生学报), 2010, 39(3): 35–38 (in Chinese with English abstract)
[3]Dai L-Y(戴凌燕). Study on the effect of three pharmaceuticals on the peanut sprout germination and protein contents. Acad Period Farm Prod Proc (农产品加工?学刊), 2008, (3): 46–47 (in Chinese with English abstract)
[4]Xiao C-Z(肖昌珍), Wu Y(吴渝), Gan D-S(甘冬生), Tong C-X(童春霞), Liu G-M(刘桂梅). The analysis of biochemical quality of China peanut germplasm. Peanut Sci Technol (花生科技), 1999, (suppl): 161–166 (in Chinese)
[5]Gao H-M(高慧敏), Zhang Y(张颖). Microanalysis and fast analysis on fatty acids of peanut seed by gas chromatography. Chin Agric Sci Bull (中国农学通报), 2010, 26(13): 98–103 (in Chinese with English abstract)
[6]Li Y(李颖). Study on extension of storage period of peanut. Sci Technol Cereals, Oils Foods (粮油食品科技), 2009, 17(2): 45–47 (in Chinese with English abstract)
[7]Huang A H C. Plant lipases. In: Borstrom B, Brockman H L, eds. Lipases. Elsevier Science Publishers, Amsterdam, 1984. pp 419–442
[8]Chen X-J(陈雄金). The research of lipase and its application. Sci Technol Inform (科技信息), 2008, 19: 58 (in Chinese)
[9]Yamamoto A, Fujii Y, Yasumoto K, Mitsuda H. Partial purification and study of some properties of rice germ lipoxygenase. Agric Biol Chem, 1980, 44: 443–445
[10]Araki T, Kitaoka H. Antioxidative properties of probucol estimated by the reactivity with superoxide and by electrochemical oxidation. Chem Pharm Bull, 2001, 49: 943–947
[11]Yuan W-W(袁伟伟), Tan X-L(谭小力), Zhou J(周佳), Zhu F-G(朱福各), Xu F(胥峰), Yu L-L(于莉莉). Dynamic change of lipases activity during post-germinative growth and seed development in Brassica napus. Jiangsu J Agric Sci (江苏农业学报), 2010, 26(3): 482–486 (in Chinese with English abstract)
[12]Zhang C(张驰), Liu X-P(刘信平), Zhou D-Z(周大寨), Tian G-Z(田国政). The influence of selenium upon seeds budding and fatase of peanut. Hubei Agric Sci (湖北农业科学), 2003, 3: 36–37 (in Chinese with English abstract)
[13]Zhai Z-Q(翟征秋), Sun H-F(孙会芳), Zhang R-H(张瑞华). Effect of heavy metals Cr and Cu on seeds germination and lipase activity of peanut. J Anhui Agric Sci (安徽农业科学), 2009, 37(1): 70–71 (in Chinese with English abstract)
[14]Shen L(申琳), Zhang Z-Q(张志强), Shi L(史兰), Shi F(石凤), Fan B(范蓓), Sheng J-P(生吉萍). Changes of the activities of proteinase, Lipase, SOD and CAT during the germination of the peanut seed. J Chin Inst Food Sci Technol (中国食品学报), 2003, (suppl): 24–27 (in Chinese with English abstract)
[15]Zhang Y(张瑛), Wu Y-J(吴跃进), Yu Z-L(余增亮), Wang Y(王钰), She D-H(佘德红), Song M(宋美). The rapid detection of seeds lipase activity. China, Patent serial number: 200510037720.6. 2005. 2 (in Chinese)
[16]Liu J(刘洁), Zhang Y(张瑛), Song M(宋美), Ren C(任冲), Jiang J-Y(蒋家月), Yu Z-L(余增亮), Wu Y-J(吴跃进). Study on accurate analysis technique of rice seed lipase. Chin High Technol Lett (高技术通讯), 2007, 17(10): 1077–1081 (in Chinese with English abstract)
[17]Huang X-R(黄锡荣), Zhang W-J(张文娟), Song S-F(宋少芳), Li Y-Z(李越中), Qu Y-B(曲音波). Pectrophotometric assay of lipase activity in microemulsion. Chemistry (化学通报), 2001, (10): 659–661 (in Chinese with English abstract)
[18]Zhi J-Z(支巨振), Bi X-H(毕辛华), Du K-M(杜克敏), Chang X-L(常秀兰), Yang S-H(杨淑惠), Ren S-P(任淑萍), Wu Z-X(吴志行), Li R-F(李仁凤), Zhao J-Y(赵菊英). Rules for Agricultural Seed Testing—Germination Test (农作物种子检验规程——发芽试验). Beijing: Standard Press of China, 1995 (in Chinese)
[19]Jin J-M(金建猛), Ren L(任丽), Gu J-Z(谷建中), Fan J-L(范君龙), Liu X-Y(刘向阳). Safe storage of peanut seed cause analysis and countermeasures. Modern Agric (现代农业), 2007, (8): 41 (in Chinese)
[20]Magda A M, Tarek M M, Saleh A M, Afaf S F. Distribution of lipases in the gramineae: partial purification and characterization of esterase from Avena fatua. Bioresource Technol, 2000, 73: 227–234
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[15] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!