欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1683-1688.doi: 10.3724/SP.J.1006.2011.01683

• 研究简报 • 上一篇    下一篇

利用三个分子标记鉴定大麦Yd2基因型及其在育种辅助选择中的应用

赵彦宏1,*,王艳芳1,李润植2,*,牛洪斌3,薛敬爱2,刘林德1   

  1. 1鲁东大学生命科学学院,山东烟台 264025;2山西农业大学农学院,山西太谷 030801;3国家小麦工程技术研究中心,河南郑州 450002
  • 收稿日期:2011-02-16 修回日期:2011-05-20 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 赵彦宏, E-mail: zyhbob@163.com, Tel: 13153512601; 李润植, E-mail: rli2001@hotmail.com
  • 基金资助:

    本研究由国家自然科学基金项目(30800682, 30871530)和山东省优秀中青年科学家科研奖励基金项目(BS2009NY014)资助。

Identification of Yd2 Genotype in Barley with Molecular Markers and Their Application in Molecular Marker-assisted Selection

ZHAO Yan-Hong1,*,WANG Yan-Fang1,LI Run-Zhi2,*,NIU Hong-Bin3,XUE Jing-Ai2,LIU Lin-De1   

  1. 1School of Life Science, Ludong University, Yantai, 264025, China; 2College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China; 3National Engineering Research Center for Wheat, Zhenzhou 450002, China?
  • Received:2011-02-16 Revised:2011-05-20 Published:2011-09-12 Published online:2011-06-28
  • Contact: 赵彦宏, E-mail: zyhbob@163.com, Tel: 13153512601; 李润植, E-mail: rli2001@hotmail.com

摘要: 研究分子标记鉴定大麦抗黄矮病基因Yd2的有效性,可为Yd2基因在大麦抗病育种中的广泛应用提供快速有效的分子辅助选择工具。利用与Yd2基因紧密连锁的YLMCAPS-YlpASPCR-Ylp标记同时检测52份国内外大麦品种(系)与4份大麦F1杂种的Yd2基因型,同时结合生物学抗性检测的表型分析其有效性。通过对Yd2基因型已知的20份大麦品种(系)及4个F1杂种的Yd2基因型分析,表明YLMCAPS-YlpASPCR-Ylp标记可以有效判断大麦Yd2基因型。进一步用这3个标记检测32份Yd2基因型未知的大麦的基因型,鉴定出基因型为Yd2-/Yd2-的品种(系) 27份,基因型为Yd2+/Yd2+的品种(系) 5份。在回交育种的分子辅助选择实例中,从BC2F2世代中选出了16个基因型为Yd2+/Yd2+的单株。3个分子标记结合应用能够快速有效地鉴定大麦Yd2基因型,可用于Yd2基因回交育种中的大规模分子标记辅助选择。

关键词: 大麦, 大麦黄矮病, Yd2基因, 分子辅助选择, 分子标记

Abstract: The objectives of this study were to assess the feasibility of molecular markers YLM, CAPS-Ylp, and ASPCR-Ylp used in Yd2 gene identification in barley and to provide a rapid and effective marker-assisted selection (MAS) method for facilitating the application of Yd2 gene in resistance breeding to barley yellow dwarf virus (BYDV) in barley. The three markers were used to detect the Yd2 genotypes in fifty-two barley cultivars (lines) and four hybrids of F1 generation. The resistance identification was performed to confirm the Yd2 genotypes of these cultivars (lines). Moreover, the three markers were applied to select the plants with Yd2 gene in a practice resistant-breeding program. The three markers could identify successfully the Yd2 genotypes of twenty barley lines and four F1 hybrids with known Yd2 genotypes. This result confirmed that the effectiveness of the three markers in identification of Yd2 genotypes in barley. In 32 barley cultivars (lines) with unknown Yd2 genotype, the three markers revealed Yd2-/Yd2- genotype in 27 cultivars (lines) and Yd2+/Yd2+ genotype in the remaining five cultivars (lines). In a breeding practice aiming at BYDV resistance improvement, 16 positive plants with Yd2+/Yd2+ genotype were selected rapidly and successfully from the BC2F2 population using MAS approach. We suggest the cooperative application of the three markers in selecting Yd2 gene and genotype from a large scale of lines in barley backcross populations to ensure the accuracy and efficiency of MAS.

Key words: Barley, Barley yellow dwarf disease, Yd2 gene, Marker-assisted selection, Molecular marker

[1]Miller W A, Rasochova L. Barley yellow dwarf viruses. Annu Rev Phytopa, 1997, 35: 167–190
[2]Lister R M, Ranieri R. Distribution and economic importance of barley yellow dwarf. In: D’Arcy C J, Burnett P A, eds. Barley Yellow Dwarf: 40 Years of Progress. Minnesota: American Phytopathological Society, 1995. pp 29–53
[3]Tian M-Y(田苗英), Wu M-S(吴森茂), Chen C-S(陈彩层), Xiao H(肖红), Cheng Z-M(成卓敏).Construction of plant expression vector harboring defective replicase gene of barley yellow dwarf virus and gaining of transgenic wheat plants. Sci Agric Sin (中国农业科学), 1999, 32(5): 49–54 (in Chinese with English abstract)
[4]Zhang Z Y, Lin Z S, Xin Z Y. Research progress in BYDV resistance genes derived from wheat and its wild relatives. J Genet Genomics, 2009, 36: 567–573
[5]Zhao Y-H(赵彦宏), Li R-Z(李润植), Liu Z(刘征), Jiao F-C(焦芳婵), Mao X(毛雪), Zhang D-X(张东旭). Dot-blot hybridization analysis of resistance to BYDV in barley. Acta Agron Sin (作物学报), 2003, 29(2): 315–320 (in Chinese with English abstract)
[6]Collins N C, Paltridge N G, Ford C M, Symons R H. The Yd2 gene for barley yellow dwarf virus resistance maps close to the centromere on the long arm of barley chromosome 3. Theor Appl Genet, 1996, 92: 858–864
[7]Plumb R T, Johnstone G R. Cultural, chemical and biological methods for the control of barley yellow dwarf. In: D’Arcy C J, Burnett P A, eds. Barley Yellow Dwarf: 40 Years of Progress. Minnesota: American Phytopathological Society, 1995. pp 307–319
[8]Kang B, Yeam I, Jahn M M. Genetics of plant virus resistance. Annu Rev Phytopathol, 2005, 43: 581–621
[9]Fedak G, Chen Q, Conner R L, Laroche A, Comeau A, Pierre C A. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica, 2001, 120: 373–378
[10]Lin Z S, Cui Z F, Zeng X Y, Ma Y Z, Zhang Z Y, Nakamura T, Ishikawa G, Nakamura K, Yoshida H, Xin Z Y. Analysis of wheat-Thinopyrum intermedium derivatives with BYDV-resistance. Euphytica, 2007, 158: 109–118
[11]Zhang Z-Y(张增艳), Ma Y-Z(马有志), Xin Z-Y(辛志勇), Chen X(陈孝), Wu D-L(武东亮), Lin Z-S(林志珊). Analysis of the chromosome constitution of wheat lines resistant to barley yellow dwarf virus by genomic in situ hybridization. Sci Agric Sin (中国农业科学), 1998, 31(3): 1–4 (in Chinese with English abstract)
[12]Shaller C W, Rasmusson D C, Qualset C O. Source of resistance to the yellow dwarf virus in barley. Crop Sci, 1963, 3: 342–344
[13]Tanguy S, Dedryver C A. Reduced BYDV-PAV transmission by the grain aphid in a Triticum monococcum line. Eur J Plant Pathol, 2009, 123:281–289
[14]Rasmusson D C, Schaller C W. The inheritance of resistance in barley to the yellow-dwarf virus. Agron J, 1959, 51: 661–664
[15] Burnett P A, Comeau A, Quslset C O. Host plant tolerance or resistance for control of brley yellow dwarf. In: D’Arcy C J, Burnett P A, eds. Barley Yellow Dwarf: 40 Years of Progress. Minnesota: American Phytopathological Society, 1995. pp 321–343
[16]Šíp V, Širlová L, Chrpová J. Screening for barley yellow dwarf virus-resistant barley genotypes by assessment of virus content in inoculated seedlings. J Phytopathol, 2006, 154: 336–342
[17]Jefferies S P, King B J, Barr A R, Warner P, Logue S J, Langridge P. Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed, 2003, 122: 52–56
[18]Schaller C W. The genetics of resistance to barley yellow dwarf virus in barley. In: Barley Yellow Dwarf: A Proceeding of a Workshop. Mexico: CIMMYT, 1984. pp 93–99
[19]Burnett P A, Comeau A, Qualset C O. Host plant tolerance or resistance for control of barley yellow dwarf. In: D’Arcy C J, Burnett P A, eds. Barley Yellow Dwarf: 40 Years of Progress. Minnesota: American Phytopathological Society, 1995. pp 321–343
[20]Kosavá K, Chrpová J, Šíp V. Recent advances in breeding of cereals for resistance to barley yellow dwarf virus: a review. Czech J Genet Plant Breed, 2008, 44: 1–10
[21]Paltridge N G, Collins N C, Bendahmane A, Symons R H. Development of YLM, a codominant PCR marker closely linked to the Yd2 gene for resistance to barley yellow dwarf disease. Theor Appl Genet, 1998, 96: 1170–1177
[22]Ford C M, Paltridge N G, Rathjen J P, Moritz R L, Simpson R J, Symons R H. Rapid and informative assays for Yd2, the barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Mol Breed, 1998, 4: 23–31
[23]Saghai-Maroof M A, Soilman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length plymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[24]Wang H, Qi M, Cutler A J. A simple method of preparing plant samples for PCR. Nucl Acids Res, 1993, 21: 4153–4154
[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[5] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[8] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[9] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[10] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[11] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[12] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[13] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[14] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350.
[15] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!