欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1724-1734.doi: 10.3724/SP.J.1006.2011.01724

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

栽培大豆和野生大豆的Glyma13g21630基因多样性分析

张乐,李英慧**,刘章雄,邱丽娟*   

  1. 农作物基因资源与遗传改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室 / 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2011-03-15 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82105841
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB125903)和国际科技合作项目(2008DFA30550)资助。

Analysis of Gene Glyma13g21630 Diversity in Cultivated (G. max) and Wild (G. soja) Soybeans

ZHANG Le,Li Ying-Hui**,LIU Zhang-Xiong,QIU Li-Juan*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Germplasm Utilization, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-03-15 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82105841

摘要: 利用Sanger方法对49份野生大豆,46份地方品种和38份选育品种的Glyma13g21630基因测序,采用DNAStar、Mega、DNAsp和Tassel软件分析Glyma13g21630的单核苷酸多态性(SNP)位点在不同类型大豆群体的分布规律。结果表明,在133份供试种质中检测到多态性位点29个,包括22个SNP和7个InDel,多态性频率分别为1SNP/138 bp和1InDel/434 bp。Glyma13g21630基因序列中多态性位点的分布不均匀,其中内含子3和5为变异富集区,其他区域变异较小。单倍型分析表明,Glyma13g21630在野生大豆和栽培大豆中的多态性位点数目逐渐减少,分布范围也越来越窄;连锁不平衡分析表明,野生大豆的7个高频SNP位点中有42.86%处于极显著的连锁不平衡状态;Ka/Ks>1,说明野生大豆在向栽培大豆的进化中,某些位点受到正向选择,多态性显著降低。Glyma13g21630基因在大豆由野生向栽培驯化的过程中因正向选择作用而固定了有益变异,表现出瓶颈效应。

关键词: 大豆, Glyma13g21630, 单核苷酸多态性, 单倍型

Abstract: Glyma13g21630 from soybean is homologous with a gene related to leaf size from Arabidopisis thaliana, and it experienced man-made selection during domestication in small sample test. This paper aims at analyzing single nucleotide polymorphism of Glyma13g21630 in large sample test and providing the foundation for tracing back to soybean domestication and analyzing the genetic basis of domesticated traits. According to Sanger method, PCR products of Glyma13g21630 from 49 wild soybean and 84 cultivars (including 46 landraces and 38 cultivars) were sequenced. The distribution patterns of single nucleotide polymorphism (SNP) for Glyma13g21630 were summarized. Using DNAStar, Mega, DNAsp and Tassel software tools, a total of 29 polymorphism sites were identified, which included 22 SNPs and seven InDels with frequencies of 1SNP/138 bp and 1InDel/434 bp, respectively. There were rich regions for nucleotide variation in intron three and intron five and less variations in other regions. Haplotype analysis indicated that the number of polymorphic loci was reducing from wild soybean to cultivated soybean, and the distribution range was correspondingly narrowed. Linkage disequilibrium analysis demonstrated that 42.86% of SNP sites in wild soybean were at significant linkage disequilibrium levels. The high ratio of Ka/Ks illustrated that some sites suffered strong positive selection pressure, which resulted in the reduction of polymorphism. The favored variation of Glyma13g21630 has been fixed in cultivated soybean, showing a bottleneck effect simultaneously.

Key words: Soybean, Glyma13g21630, Single nucleotide polymorphism, Haplotype

[1]Wang X J, Reyes J L, Chua N H, Gassterland T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 2004, 5: 1–15
[2]Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365–1369
[3]Thubrer C S, Reagon M, Rross B L, Olsen K M, Jia Y L, Caicedo A L. Molecular evolution of shattering loci in US weedy rice. Mol Ecol, 2010, 19: 3271–3284
[4]Zhou X-A(周新安), Peng Y-H(彭玉华), Wang G-X(王国勋), Chang R-Z(常汝镇). Preliminary studies on the centres of genetic diversity and origination of cultivate soybeans in China. Sci Agric Sin (中国农业科学), 1998, 31(3): 37–43 (in Chinese with English abstract)
[5]Zhao T-J(赵团结), Gai J-Y(盖钧镒), Li W-H(李旺海), Xing H(邢邯), Qiu J-X(邱家驯). Advances in breeding for super high-yielding soybean cultivars. Sci Agric Sin (中国农业科学), 2006, 39(1): 29–37 (in Chinese with English abstract)
[6]Palatnik J, Allen E, Wu X L, Schommer C, Schwab R, Currington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425: 257–263
[7]Gorou H, Ali F, Ushio F, Hirokazu T. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006, 119: 37–42
[8]Ascencio-Ibanez J T, Sozzani R, Lee T J, Chu T M, Wolfinger R D, Cella Rino, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminvirus infection, Plant Physiol, 2008, 148: 436–454
[9]Wang L, Hao L, Li X, Hu S, Ge S, Yu J. SNP deserts of Asian cultivated rice: genomic regions under domestication. Evol Biol, 2009, 22: 751–761
[10]Joseph A H, Walter R F, Randy C S, Grace A W, Susan L J, Silvia R C. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74
[11]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011–1016
[12]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561
[13]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[14]Qiu L-J(邱丽娟), Li Y-H(李英慧), Guan R-X(关荣霞), Liu Z-X(刘章雄), Wang L-X(王丽侠), Chang R-Z(常汝镇). Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agron Sin (作物学报), 2009, 35(4): 571–579 (in Chinese with English abstract)
[15]Rozas J, Sánchez-DelBarrio J C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics, 2003, 19: 2496–2497
[16]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599
[17]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123: 585–95
[18]Fisher R A. The mathematical distribution used in the common tests of significance. Econometrica, 1935, 98: 39–54
[19]Nielsen R. Molecular signatures of natural selection. Ann Rev Genet, 2005, 39: 197–218
[20]Hyten D L, Choi I Y, Song Q J, Shoemaker R C, Nelson R L, Costa J M, Specht J E, Cregan P B. Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics, 2007, 175: 1937–1944
[21]Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B. Single-nucleotide polymorphisms in soybean. Genetics, 2003, 163: 1123–1134
[22]Choi I Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yooh M S, Hwang E Y, Yi S I, Yong N D, Shoemaker R C, Tassll C P, Specht J E. A soybean transcript map: gene distribution, haplotype and SNP analysis. Genetics, 2007, 176: 685–696
[23]Liu C-G(刘传光), Zhang G-Q(张桂权). Single nucleotide polymorphism (SNP) and its application in rice. Hereditas, 2006, 28(6): 737–744 (in Chinese with English abstract)
[24]Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky P M, Rigau J, Murigneux A, Martinant J P, Barriere Y. Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet, 2004, 16, 5: 19
[25]Sachidanandam R, Weissman D, Schmidt S C, Kakol J M, Stein L D, Marth G, Sherry S, Mullikin J C, Mortimore B J, Willey D L, Hunt S E, Cole C G, Coggill P C, Rice C M, Ning Z, Rogers J, Bentley D R, Kwok P Y, Mardis E R, Yeh R T, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston R H, McPherson J D, Gilman B, Schaffner S, Van Etten W J, Reich D, Higgins J, Daly M J, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody M C, Linton L, Lander E S, Altshuler D. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 15, 409: 928–933
[26]Chen J-B(陈吉宝), Jing R-L(景蕊莲), Yuan H-Y(员海燕), Wei B(卫波), Chang X-P(昌小平). Single nucleotide polymorphism of TaDREB1 gene in wheat germplasm. Sci Agric Sin (中国农业科学), 2005, 38: 2387–2394 (in Chinese with English abstract)
[27]Wang A-P(王爱萍), Mao X-G(毛新国), Jing R-L(景蕊莲), Chang X-P(昌小平), Yang W-D(杨武德). Single nucleotide polymorphism of TaMyb2-II gene in common wheat (Triticum aestivum L.) and its relatives. Acta Agron Sin (作物学报), 2006, 32(12): 1809–1816 (in Chinese with English abstract)
[28]Rickert A M, Kim J H, Meyer S, Nagel A, Ballvora A, Oefner P J, Gebhardt C. First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J, 2003, 1: 399–410
[29]Tian Z X, Wang X B, Lee R, Li Y H, Specht J E, Nelson R L, McClean P E, Qiu L J, Ma J X. Artificial selection for feterminate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
[30]Wu X-L(吴晓雷), He C-Y(贺超英), Chen S-Y(陈受宜), Zhuang B-C(庄炳昌), Wang K-J(王克晶), Wang X-C(王学臣). Phylogenetic analysis of interspecies in genus Glycine through SSR markers. Acta Genet Sin (遗传学报), 2001, 28: 359–366 (in Chinese with English abstract)
[31]Hyten D L, Song Q J, Zhu Y L, Choi I Y, Nelson R L, Costa J M, Specht J E, Shoemaker R C, Cregan P B. Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA, 2006, 103: 16666–16671
[32]Tenaillon M, Sawkins M C, Long A D, Gaut R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphisms along chromosome 1 of maize (Zea mays ssp. may L). Proc Natl Acad Sci USA, 2001, 98: 9161–9166
[33]Ching A, Katherine S C, Mark J, Maurine D, Oscar S S, Scott T, Michele M, Rafalski J. SNP frequency haplotype structure and linkage diseqilibrium in elite maize inbred lines. BMC Genet, 2002, 3: 19
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!