欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 240-244.doi: 10.3724/SP.J.1006.2012.00240

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的水稻短根毛突变体的遗传分析和基因定位

丁沃娜1,黄炜2,宁永强1,朱世华1   

  1. 1宁波大学植物分子生物学研究室,浙江宁波315211;2浙江大学植物生理学与生物化学国家重点实验室,浙江杭州310058
  • 收稿日期:2011-06-08 修回日期:2011-09-13 出版日期:2012-02-12 网络出版日期:2011-12-01
  • 基金资助:

    本研究由国家自然科学基金项目(31071388)和宁波市自然科学基金项目(2011A610001)资助。

Genetic Analysis and Gene Mapping of a Novel Short Root Hair Mutant in Rice

DING Wo-Na1,HUANG Wei2,NING Yong-Qiang1,ZHU Shi-Hua1   

  1. 1 Laboratory of Plant Molecular Biology, Ningbo University, Ningbo 315211, China; 2 State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China?
  • Received:2011-06-08 Revised:2011-09-13 Published:2012-02-12 Published online:2011-12-01

摘要: 根毛是植物吸收水分和养分的重要器官。本研究从T-DNA突变体库中获得一个以中花11为遗传背景的水稻短根毛突变体, 命名为ossrh3 (Oryza sativa short root hair 3)。该突变体的根毛伸长严重受阻, 并且伴随株高、主根长、侧根长和侧根数目等性状的改变。遗传分析表明该突变性状受1对隐性单基因控制, 利用ossrh3纯合体和籼稻品种Kasalath杂交构建F2定位群体, 利用已公布的水稻SSR (simple sequence repeat)和自行设计的STS (sequence- tagged site)标记, 最终将OsSRH3定位在水稻第1染色体上的标记S38978和S39016之间, 物理距离约为37.7 kb, 包含8个候选基因, 为进一步克隆OsSRH3基因和研究禾本科作物根毛发育的分子调控机理提供了依据。

关键词: 水稻(Oryza sativa L.), 短根毛突变体, 遗传分析, 基因定位

Abstract: In plants, root hairs are important organs for the uptake of nutrients and water.A rice (Oryza sativa L.) mutant with short root hairs (ossrh3) was isolated from a T-DNA insertion mutant library of rice with Zhonghua 11 background. The elongation of root hairs in the mutant was severely impaired, and other traits were also affected including the plant height, primary root length, lateral root length and number of lateral roots. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive nuclear gene. For mapping the OsSRH3 gene, an F2 population was generated by crossing the mutant ossrh3 with Kasalath wild type. Ultimately by using the published SSR (simple sequence repeat) markers and some newly designed STS (sequence-tagged site) markers, the OsSRH3 was mapped to a 37.7 kb region between the markers S38978 and S39016 on chromosome 1. Within this region, there were eight predicted genes. The study will be helpful for the cloning of OsSRH3 and characterization of the molecular genetic mechanisms of the root hair development in gramineous plants.

[1]Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell, 2002, 14: 3237–3253

[2]Gilroy S, Jones D L. Through form to function: root hair development and nutrient uptake. Trends Plant Sci, 2000, 5: 56–60

[3]Horn R, Yi K, Menand B, Pernas-Ochoa M, Takeda S, Walker T, Dolan L. Root epidermal development in Arabidopsis. Annu Plant Rev, 2009, 37: 64–82

[4]Libault M, Brechenmacher L, Cheng J, Xu D, Gary S. Root hair systems biology. Trends Plant Sci, 2010, 15: 641–650

[5]Ding W N, Yu Z M, Tong Y L, Huang W, Chen H M, Wu P. A transcription factor with a bHLH domain regulates root hair development in rice. Cell Res, 2009, 19: 1309–1311

[6]Kim C M, Park S H, Je B I, Park S H, Park S J, Piao H L, Eun M Y, Dolan L, Han C D. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol, 2007, 143: 1220–1230

[7]You T, Toyota M, Ichii M, Taketa S. Molecular cloning of a root hairless gene rth1 in rice. Breed Sci, 2009, 59: 13–20

[8]Yu Z M, Kang B, He X W, Lv S L, Bai Y H, Ding W N, Chen M, Cho H, Wu P. Root hair-specific EXPANSINs modulate root hair elongation in rice. Plant J, 2011, 66: 725–734

[9]Won S K, Kumari S, Choi S B, Cho M, Lee S H, Cho H T. Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells, 2010, 30: 369–376

[10]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 3rd edn. Manila: International Rice Research Institute, 1976. pp 62

[11]Zhang X-Q(张向前), Zou J-S(邹金松), Zhu H-T(朱海涛), Li X-Y(李晓燕), Zeng R-Z(曾瑞珍). Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice (Oryza sativa L.). Hereditas (遗传), 2008, 30(10): 1349–1355 (in Chinese with English abstract)

[12]Michelmore R W, Papan I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregantanalysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832

[13]Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423–447

[14]Wen T J, Schnable P S. Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am J Bot, 1994, 81: 833–842

[15]Wen T J, Hochholdinger F, Sauer M, Bruce W, Schnable P S. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol, 2005, 138: 1637–1643

[16]Hochholdinger F, Wen T J, Zimmermann R, Chimot-Marolle P, Silva O C, Bruce W, Lamkey K R, Wienand U, Schnable P S. The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J, 2008, 54: 888–898

[17]Engvild K C, Rasmussen S K. Root hair mutants of barley. Barley Genet Newsl, 2004, 34: 13–15

[18]Gahoonia T S, Nielsen N E, Joshi P A, Jahoor A. A roothairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil, 2001, 235: 211–219

[19]Kwasniewski M, Szarejko I. Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol, 2006, 141: 1149–1158

[20]Kwasniewski M, Janiaka A, Mueller-Roeberb B, Szarejkoa I. Global analysis of the root hair morphogenesis transcriptome reveals new candidate genes involved in root hair formation in barley. J Plant Physiol, 2010, 167: 1076–1083
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[5] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[6] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[7] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[8] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[9] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[10] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[11] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[12] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[13] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[14] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[15] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!