欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 231-239.doi: 10.3724/SP.J.1006.2012.00231

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用表达分析和基因沉默方法研究硫代硫酸硫转移酶基因TaTST与小麦抗白粉病反应的关系

贺洋,岳洁瑜,王华忠   

  1. 天津师范大学生命科学学院 / 细胞遗传与分子调控天津市重点实验室,天津 300387
  • 收稿日期:2011-08-08 修回日期:2011-10-13 出版日期:2012-02-12 网络出版日期:2011-12-01
  • 通讯作者: 王华忠, E-mail: skywhz@mail.tjnu.edu.cn
  • 基金资助:

    本研究由天津市自然科学基金(08JCYBJC05000)和天津市高等学校科技发展基金(200100606)资助。

Gene Expression Profiling and Silencing Reveal the Relationship between TaTST, a Wheat Thiosulfate Sulfurtransferase Gene, and the Resistance Response of Wheat to Powdery Mildew

HE Yang, YUE Jie-Yu, WANG Hua-Zhong   

  1. School of Life Sciences / Tianjin Key Laboratory of Cyto-Genetical & Molecular Regulation, Tianjin Normal University, Tianjin 300387, China
  • Received:2011-08-08 Revised:2011-10-13 Published:2012-02-12 Published online:2011-12-01
  • Contact: 王华忠, E-mail: skywhz@mail.tjnu.edu.cn

摘要: 硫代硫酸硫转移酶参与植物体内的硫代谢、氰化物的清除以及活性氧的生成与清除,与植物抗病反应密切相关。小麦抗、感白粉病近等基因系材料在接种白粉菌后均诱导表达硫代硫酸硫转移酶基因TaTST,并在接种后0~48 h内呈现2次诱导峰值,分别与白粉菌初次接触识别和附着胞侵入、吸器形成时间相对应,也与2次氧突发时间对应。TaTST在感病材料上的诱导表达水平明显高于在抗病材料上,由此导致的活性氧过度清除可能是导致感病反应的原因之一。TaTST也参与抗病反应过程。利用病毒诱导的基因沉默技术(virus-induced gene silencing, VIGS)创造了TaTST基因沉默的抗病植株。尽管充分发病时间后沉默植株叶片上并未观察到肉眼可见的病斑,但侵染早期白粉菌成功侵入频率的增加和次级菌丝的有限伸长说明TaTST沉默植株抗病水平下降。TaTST沉默导致乳突致密度下降和H2O2在细胞内的扩散时间延迟。因此,TaTST可能通过调节活性氧的积累和扩散、乳突的形成等小麦-白粉菌互作早期的寄主细胞反应而参与小麦对白粉菌的抗侵入过程。

关键词: 小麦, 白粉菌, 硫代硫酸硫转移酶, VIGS

Abstract: Plant thiosulfate sulfurtransferase (TST), which participates in sulfur metabolism, removal of cyanide, generation and removal of reactive oxygen species (ROS), is closely related to plant disease resistance. The wheat TST-encoding gene TaTST was induced by the powdery mildew pathogen fungus Blumeria graminis f.sp. tritici (Bgt) in both theresistant and the susceptible wheat near-isogenic lines. Two expression peaks of TaTST were found from 0 to 48 h after inoculation of Bgt, corresponding to the initial contact and recognition between the host cell and Bgt and the invasion attempt of appressoria and haustoria formation. The two expression peaks were also in agreement with the two oxygen burst reactions. The induced expression level of TaTST was significantly higher in the susceptible line than in the resistant line, which may result in excessive removal of ROS as a response to Bgt infection and so contribute to the process of diseasesusceptibility. TaTST also involved in the process of disease resistance. The method of virus-induced gene silencing (VIGS) was used to silence the TaTST gene of the resistant line. Although TaTST-silencing plants did not produce visible mildew spots or lesions, they showed reduction of resistance to powdery mildew with the increased successful penetration rate and limited elongation of secondary hypha. Decreased density of papilla and delayed H2O2 spreading in the Bgt-challenged host cells of the VIGS plants suggest that TaTST possibly affects the Bgt penetration process in resistance response through participating in the ROS accumulation and spread and the papilla formation at early stage of wheat-Bgt interaction.

Key words: Wheat, Blumeria graminis f.sp. tritici (Bgt), Thiosulfate sulfurtransferase (TST), VIGS

[1]Cipollone R, Ascenzi P, Visca P. Common themes and variations in the rhodanese superfamily. IUBMB Life, 2007, 59: 51–59

[2]Saidu Y. Physicochemical features of rhodanese: A review. Afr J Biotechnol, 2004, 3: 370–374

[3]Papenbrock J, Guretzki S, Henne M. Latest news about the sulfurtransferase protein family of higher plants. Amino Acids, 2011, 41: 43–57

[4]Bartels A, Mock H P, Papenbrock J. Differential expression of Arabidopsis sulfurtransferases under various growth conditions. Plant Physiol Biochem, 2007, 45: 178–187

[5]Papenbrock J, Schmidt A. Characterization of two sulfurtransferase isozymes from Arabidopsis thaliana. Eur J Biochem, 2000, 267: 5571–5579

[6]Mao G H, Wang R G, Guan Y F, Liu Y D, Zhang S Q. Sulfurtransferases 1 and 2 play essential roles in embryo and seed development in Arabidopsis thaliana. Biol Chem, 2011, 286: 7548–7557

[7]Niu J-S(牛吉山), Yu L(于玲), Ma Z-Q(马正强), Chen P-D(陈佩度), Liu D-J(刘大钧). Molecular cloning, characterization and mapping of a rhodanese like gene in wheat. Acta Genet Sin (遗传学报), 2002, 29(3): 266–272 (in Chinese with English abstract)

[8]Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry, 2004, 65: 1795–1804

[9]Dubuis P H, Marazzi C, Staedler E, Mauch F. Sulphur deficiency causes a reduction in anti- microbial potential and leads to increased disease susceptibility of oilseed rape. Phytopathology, 2005, 153: 27–36

[10]Bartels A. Functional charactersation of sulfurtransferase proteins in higher plants. PhD Dissertation of Leibniz University, Hannover, Germany, 2006

[11]Vennesland B, Castric P A, Conn E E, Solomonson L P, Volini M, Westley J. Cyanide metabolism. Fed Proc, 1982, 41: 2639–2648

[12]Grossmann K. A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol Plant, 1996, 97: 772–775

[13]Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y. Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol, 2011, 155: 502–514

[14]Donadio S, Sha?ee A, Hutchinson R. Disruption of a rhodanese like gene results in cysteine auxotrophy in Saccharopolyspora erythraea. J Bacteriol, 1990, 172: 350–360

[15]Rausch T, Wachter A. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci, 2005, 10: 504–509

[16]Papenbrock J, Bartels A, Hartmann F, Hartmann J, Triulzi T. Reduced sulfur in the plant cell: enzymatic formation and functional roles. In: Sirko A, De Kok L J, Haneklaus S, Hawkesford M J, Rennenberg H, Kaito S, Schnug E, Stulen I, eds. Sulfur metabolism in higher plants. Weikersheim: Markgraf Publishers, 2009. pp 217–219

[17]Nandi D L, Horowitz P M, Westley J. Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol, 2000, 32: 465–473

[18]Petty I T, Hunter B G, Wei N, Jackson A O. Infectious barley stripe mosaic virus RNA transcribed in vitro from full-length genomic cDNA clones. Virology, 1989, 171: 342–349

[19]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402–408

[20]Hückelhoven R, Fodor J, Preis C, Kogel K H. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol, 1999, 119: 1251–1260

[21]Caldo R A, Nettleton D, Wise R P. Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell, 2004, 16: 2514–2528

[22]Hückelhoven R, Kogel K H. Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance? Planta, 2003, 216: 891–902

[23]Liu G S, Sheng X Y, Greenshields D L, Ogieglo A, Kaminskyj S, Selvaraj G, Wei Y D. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Mol Plant Microbe Interact, 2005, 18: 730–741

[24]Harrach B D, Fodor J, Pogány M, Preuss J, Barna B. Antioxidant, ethylene and membrane leakage responses to powdery mildew infection of near-isogenic barley lines with various types of resistance. Eur J Plant Pathol, 2008, 121: 21–33

[25]Caplan J L, Mamillapalli P, Burch-Smith T M, Czymmek K, Dinesh-Kumar S P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell, 2008, 132: 449–462

[26]Feng H Q, Sun K, Li M Q, Li H Y, Li X, Li Y, Wang Y F. The expression, function and regulation of mitochondrial alternative oxidase under biotic stresses. Mol Plant Pathol, 2010, 11: 429–40

[27]Li Z-H(李政红), Gao D-S(高东升), Li X-L(李宪利). The relation between endormancy and changes in two main electron transport pathways of nectarine (Prunus persica var. nectariana) buds. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32(2): 156–162 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!