欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 632-638.doi: 10.3724/SP.J.1006.2012.00632

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

OsGA20ox2不同长度RNAi片段对水稻株高等农艺性状的遗传效应

王坚1,2,赵开军2,*,乔枫2,3,杨生龙1   

  1. 1 宁夏农林科学院农作物研究所, 宁夏银川750105;2 中国农业科学院作物科学研究所 / 农业部作物遗传育种重点实验室 / 农作物基因资源与基因改良国家重大科学工程, 北京100081;3青海师范大学生命与地理科学学院,青海西宁810008
  • 收稿日期:2011-08-01 修回日期:2011-12-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 通讯作者: 赵开军, E-mail: zhaokj@mail.caas.net.cn?
  • 基金资助:

    本研究由宁夏自然科学基金项目(NZ0984)资助。

Genetic Effects of Different RNA Interference Fragments from OsGA20ox2 on Plant Height and Other Agronomic Traits in Rice

WANG Jian1,2, ZHAO Kai-Jun2,*, QIAO Feng2,3,YANG Sheng-Long1   

  1. 1 Crop Institute of Ningxia Academy of Agriculture and Forestry Sciences, Ningxia 750105, China; 2 Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture / National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 College of Life and Geography Sciences, Qinghai Normal University, Xining 810008, China?
  • Received:2011-08-01 Revised:2011-12-19 Published:2012-04-12 Published online:2012-02-13
  • Contact: 赵开军, E-mail: zhaokj@mail.caas.net.cn?

摘要: 利用OsGA20ox2基因序列构建不同长度的RNAi片段并导入水稻,获得不同高度的矮化植株。将这些矮化植株与野生型植株回交获得B1F2群体,卡方检测表明B1F2群体矮秆植株数和高秆植株数符合3∶1比例,表现为矮秆显性的遗传规律。对矮化植株的F5和B1F2群体株高、各茎节间长度和一些主要农艺性状方差分析显示, OsGA20ox2基因的RNAi能显著缩短株高和各节间长度(P<0.05),RNAi干扰片段越长,使植株株高和节间长度缩短程度越大,可使株高降低24~42 cm,矮化22%~39%。在同一长度的RNAi干扰片段下,倒一节节间长度平均缩短与倒二节节间长度平均缩短非常相近,倒三节和倒四节节间长度平均缩短非常相近,总的缩短程度是倒四节>倒三节>倒二节>倒一节。这种近基部节间长度缩短幅度和比例较大的特点,利于提高水稻的抗倒伏能力,同时上部节间缩短幅度和比例较小,有效地保持合理株高,不使生物产量明显降低,有利于水稻的稳产和高产。OsGA20ox2基因的RNAi不影响如千粒重、结实率、穗长等其他主要农艺性状或影响很小。

关键词: RNAi, 株高, 节间长度, 遗传效应

Abstract: In our previous study, different rice dwarf lines were obtained through rice genetic transformation using RNAi vectors harboring different fragments of OsGA20ox2 gene. In this study, B1F2 populations were produced by backcrossing between those RNAi dwarf lines and wild-type plants. The progenies of B1F2 populations segregated in a ratio of 3 dwarf plants to 1 normal height plant, indicating that dwarf trait was dominantly inherited. At the same time, plant height, the internode length and some major agronomic traits of dwarf plants of F5 and B1F2 populations were analyzed. It was resulted that RNAiof OsGA20ox2 gene significantly reduced the rice plant height and the internode length. The longer the interference fragment was, the shorter the plant height and internode length were. In general, the rice plant height was reduced by 24–42 cm, dwarfing ratio was 22–39%. For the same RNAi fragment, the average shorten length of the first internode (counting from the top to bottom) was very similar to that of the second, and the third was very similar to the fourth. The dwarfing ratio of each internode showed a trend of the fourth > third > second > first section. Bottom internodes obtained a greater dwarfing ratio, which is good for improving lodging resistance of rice, and the upper internodes showed a lower dwarfing ratio that made the plant maintain a reasonable height, which helps the rice plants to remain a stable and high yield. Other major agronomic traits such as grain weight, seed setting rate, panicle length were not significantly affected by the RNAiof OsGA20ox2 gene.

Key words: RNAi, Plant height, Length of internode, Genetic effect

[1]Li R-T(李荣田), Jiang T-B(姜廷波), Qiu T-Q(秋太权), Cui C-H(催成焕), Gong Z-P(龚振平). Study on effect of lodging to yield and relationship between lodging and plant height in rice. Heilongjiang Agric Sci (黑龙江农业科学), 1996, (1): 13–17 (in Chinese)

[2]Wang X(王熹), Yao F-D(姚福得), Gao C-W(高成伟), Tao L-X(陶龙兴). Effect of MET on lodging of rice plant. Plant Physiol Commun (植物生理学通讯), 1987, (5): 30–32 (in Chinese)

[3]Hannon G J. RNA interference. Nature, 2002, 418: 244–251

[4]Shao Y, Chan C Y, Maliyekkel A, Lawrence C L, Roninson L B, Ding Y. Effect of target secondary structure on RNAi efficiency. RNA, 2007, 13: 1631–1640

[5]Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), ‘geen revolution’ rice contains a defective gibberellins 20-oxdase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048

[6]Qiao F, Yang Q, Wang C L, Fan Y L, Wu X F, Zhao K J. Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica, 2007, 158: 35–45

[7]Hammond S M, Bernstein E, Beach D, Hannon G J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404: 293–296

[8]Qiao F, Zhao K J. The influence of RNAi targeting of OsGA20ox2 gene on plant height in rice. Plant Mol Biol Rep, 2011, 29: 952–960

[9]Wagner N, Mroczka A, Roberts P D, Schreckengost W, Voelker T. RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes. Plant Biotechnol J, 2011, 9: 723–728

[10]Zhu J(朱军). Genetics(遗传学). Beijing: China Agriculture Press, 2002. pp 81–82 (in Chinese)

[11]Xu Z-J(徐正进), Chen W-F(陈温福), Zhang L-B(张龙步), Dong K(董克), Wang J-M(王进民). Present status and prospect of the research on rice high-yield physiology. J Shenyang Agric Univ (沈阳农业大学学报), 1995, 22(S1): 115–120 (in Chinese)

[12]Yang H-J(杨惠杰), Yang R-C(杨仁崔), Li Y-Z(李义珍), Jiang Z-W(姜照伟), Zheng J-S(郑景生). Relationship between culm traits and lodging resistance of rice cultivars. Fujian J Agric Sci (福建农业学报), 2000, 15(2): 1–7 (in Chinese with English abstract)

[13]Yuan L-P(袁隆平). Breeding for superior high-yielding in hybrid rice. Hybrid Rice (杂交水稻), 1997, 12(6): 1–6(in Chinese)

[14]Cheng S-H(程式华), Zhai H-Q(翟虎渠). Breeding strategies for superior high-yielding in hybrid rice. Res Agric Modern (农业现代化研究), 2001, 21(3): 147–150 (in Chinese with English abstract)

[15]Chen W-F(陈温福), Xu Z-J(徐正进), Zhang L-B(张龙步). Rice breeding for super high yield –from theories to practices. J  Shenyang Agric Univ (沈阳农业大学学报), 2003, 34(5): 324–327 (in Chinese with English abstract)

[16]Sasaki A, Itoh H, Gomi K, Uegchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, AShikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberelin signaling in an F-box mutant. Science, 2003, 299: 1896–1898

[17]Kerschen A, Napoli C A, Jorgensen R A, Muller A E. Effectiveness of RNA interference in transgenic plants .FEBS Lett, 2004, 565: 223–228

[18]Schweizer P, Pokomy J, Schulze-Lefert P, Dudler R. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J, 2000, 24: 895–903

[19]Takayuki K, Ishimaru K. Identification and Functional Analysis of a locus for improvement of lodging resistance in rice. Plant Physiol, 2004, 134: 676–683

[20]Ichii M, Hada K. Application of ratoon to a test of agronomic characters in rice breeding: II. The relationship between ratoon ability and lodging resistance. Jpn J Breed, 1983, 33: 251–258

[21]Yagi T. Studies on breeding for culm stiffness in rice 1: varietal differences in culm stiffness and its related traits. Jpn J Breed, 1983, 33: 411–422
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[6] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[7] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[8] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[9] 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052.
[10] 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455.
[11] 姜朋,何漪,张旭,吴磊,张平平,马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析[J]. 作物学报, 2020, 46(6): 858-868.
[12] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[13] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394.
[14] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[15] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!