作物学报 ›› 2012, Vol. 38 ›› Issue (04): 683-690.doi: 0.3724/SP.J.1006.2012.00683
孙啸震,张黎妮,戴艳娇,贺新颖,周治国*,王友华*
SUN Xiao-Zhen,ZHANG Li-Ni,DAI Yan-Jiao,HE Xin-Ying,ZHOU Zhi-Guo,WANG You-Hua*
摘要: 以遗传背景相近的棉花(Gossypium hirsutum L.)品种泗棉3号和泗杂3号为材料,于2010年在南京农业大学牌楼试验站(118º50′E, 32º02′N)模拟全球温室化气候,研究花铃期增温对棉花干物质累积的影响及其生理机制。结果显示,增温2~3℃(龄期日均温33.5~35.2℃)的条件下,主茎功能叶SPAD值降低,蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)上升,但净光合速率(Pn)下降;棉铃对位叶可溶性蛋白含量大幅上升(Δ%>50%)、可溶性糖及可溶性氨基酸含量小幅下降(P<0.05)、C/N值显著下降(P<0.05);叶片POD、CAT活性大幅下降、MDA含量显著上升;泗杂3号相关指标变化幅度较泗棉3号小。说明尽管2~3℃的增温幅度较小,但在花铃期日均温(33.5~35.2℃)的条件下,植株已处于显著的热胁迫状态,光合产物累积能力受到抑制,棉铃对位叶光合产物输出能力显著下降, 棉株总干物质累积量下降20%左右;增温条件下植株水分吸收能力下降并因此受到一定程度的水分胁迫,但此条件下光合能力下降主要由非气孔因子所致,与叶片膜结构的严重受损关系密切;泗杂3号抗高温能力高于泗棉3号。
[1]Singh R P, Prasad P V, Sunita K, Giri S N, Reddy K R. Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron, 2007, 93: 313–385[2]Song Y-L(宋艳玲), Zhang Q(张强), Dong W-J(董文杰). Impact of climate change on cotton production in Xingjiang autonomous region. Agric Meteorol (中国农业气象), 2004, 25(3): 15–20 (in Chinese with English abstract)[3]Wang H-L(王鹤龄), Wang R-Y(王润元), Zhao H(赵鸿). Response of winter wheat and cotton to climate warming in Northwest China. Agric Res Arid Areas (干旱地区农业研究), 2009, 27(1): 258–263 (in Chinese with English abstract)[4]Bhatt J G. Growth and flowering of cotton (Gossypium hirsutum L.) as affected by daylength and temperature. J Agric Sci, 1977, 89: 583–587[5]Robert W. Common themes for ecologists in global issues. J Appl Ecol, 1999, 36: 1–10[6]William B A, Turner B L. Changes in Land Use and Land Cover, a Global Perspective. London: Cambridge University Press, 1994. pp 7–101[7]Bange M P, Milroy S P. Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Res, 2004, 87: 73–87[8]Wang J(王娟), Han D-W(韩登武), Ren G(任岗), Guo J-Q(郭金强), Zhang Y-S(张永帅), Wei C-Z(危常州), Song Y-M(宋亚明). A study on relation between SPAD value, chlorophyⅡ and nitrogen content in cotton. Xinjiang Agric Sci (新疆农业科学), 2006, 43(3): 167–170 (in Chinese with English abstract)[9]Uddling J, Gelang A J, Piikki K. Evaluating the relationship between leaf chlorophyll concentration and SPAD chlorophyll meter readings. Photosynth Res, 2007, 91: 37–46[10]Ruo X-N(罗新宁), Chen B(陈冰), Zhang J-S(张巨松), Jiang P-A(蒋平安), Lou S-W(娄善伟), Peng X-F(彭小峰), He J-L(何嘉林). Study on the spatial distribution of leaf N content and SPAD value in cotton. Cotton Sci (棉花学报), 2009, 21(5): 427–430 (in Chinese with English abstract)[11]Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833−839[12]Gao S-J(高松洁), Wang W-J(王文静), Guo T-C(郭天财), Han J-F(韩锦峰). C-N metabolism characteristics in flag leaf and starch accumulating developments in seed during grain filling stage in two winter wheat cultivars with different spike type. Acta Agron Sin (作物学报), 2003, 29(3): 427−431 (in Chinese with English abstract) [13]Zhao H-J(赵会杰), Zou Q(邹琦), Zhang X-Y(张秀英). Comparison between two wheat varieties with different spike type in carbohydrate metabolism during late growth period. Acta Agron Sin (作物学报), 2003, 29(5): 676−681 (in Chinese with English abstract)[14]Hu H-B(胡宏标), Zhang W-J(张文静), Chen B-L(陈兵林), Wang Y-H(王友华), Su H-M(束红梅), Zhou Z-G(周治国). Changes of C/N ratio in the subtending leaf of cotton boll and its relation- ship to cotton boll dry matter accumulation and distribution. Acta Agron Sin (作物学报), 2008, 34(2): 254−260 (in Chinese with English abstract)[15]Xu D-Q(许大全). Some problems in stomatal limitation analysis of photosynthesis. Plant Physiol Commun (植物生理学通讯), 1997, 33(4): 241–243 (in Chinese)[16]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317–345[17]Marc D A, Tottempudi K P, Cecil R S. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedling. Plant Physiol, 1995, 109: 1247–1257[18]Turnbull M H, Murthy R, Griffin K. The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoides. Plant Cell Environ, 2002, 25: 1729–1737[19]Hu J-C(胡继超), Cao W-X(曹卫星), Jiang D(姜东), Luo W-H(罗卫红). Quantification of water stress factor for crop growth simulation effects of drought and water-logging stress on photosynthesis, transpiration and dry matter partitioning in winter wheat. Acta Agron Sin (作物学报), 2004, 30(4): 315–320 (in Chinese with English abstract) |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202. |
[8] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[9] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[10] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[11] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[12] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[13] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[14] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
[15] | 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120. |
|