作物学报 ›› 2012, Vol. 38 ›› Issue (04): 754-759.doi: 10.3724/SP.J.1006.2012.00754
• 研究简报 • 上一篇
佘朝文1,2,3,张礼华1,蒋向辉1,2,3
SHE Chao-Wen1,2,3,ZHANG Li-Hua1,JIANG Xiang-Hui1,2,3
摘要: 建立花生准确而详细的核型对于阐明其起源和开展其基因组研究十分重要。本研究采用DAPI显带和5S、45S rDNA探针双色荧光原位杂交对花生有丝分裂中期染色体进行了分析。结果表明,花生的单倍基因组总长度为(81.06±3.74) μm,最长染色体为(4.72±0.15) μm,最短染色体为(2.62±0.14)μm;有15对染色体显示了着丝粒区DAPI+带,其中10对为强带,5对为弱带;有2对5S rDNA位点和5对45S rDNA位点,其中1对5S与1对45S位点同线。综合染色体测量数据、DAPI+带和rDNA杂交信号,对花生染色体进行了准确配对和排列,建立了详细的分子细胞遗传学核型。花生的核型公式为2n=4x=40=38m+2sm(SAT),核型不对称类型属于2A型。
[1]Smartt J, Gregory W C, Gregory M P. The genomes of Arachis hypogaea: 1. Cytogenetic studies of putative genome donors. Euphytica, 1978, 27: 665–675[2]Singh A K, Smartt J. The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet Resour Crop Evol, 1998, 45: 113–118[3]Seijo J G, Lavia G I, Fernández A, Krapovickas A, Ducasse D, Moscone E A. Physical mapping of 5S and 18S–25S rRNA genes by FISH as evidences that Arachis duranensis and A. ipaensis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot, 2004, 91: 1294–1303[4]Seijo J G, Lavia G I, Fernández A, Krapovickas A, Ducasse D A, Bertioli D J, Moscone E A. Genomic relationships between the cultivated peanut (Arachis hypogaea–Leguminosae) and its close relatives revealed by double GISH. Am J Bot, 2007, 94: 1963–1971[5]Robledo G, Lavia G I, Seijo G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet, 2009, 118: 1295–1307[6]Robledo G, Seijo G. Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet, 2010, 121: 1033–1046[7]Husted L. Cytological studies on the peanut, Arachis. I. Chromosome number and morphology. Cytologia, 1933, 5: 109–117[8]Husted L. Cytological studies on the peanut, Arachis. II. Chromosome number, morphology and their application to the problem of the origin of the cultivated forms. Cytologia, 1936, 7: 396–423[9]D'Cruz R, Tankasale M P. A note on chromosome complement of four groundnut varieties. Indian Oilseeds J, 1961, 5: 58–59[10]Singh A K, Moss J P. Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2: Chromosome complements of species in section Arachis. Theor Appl Genet, 1982, 61: 305–314[11]Stalker H T, Dalmacio R D. Karyotype analysis and relationships among varieties of Arachis hypogaea L. Cytologia, 1986, 51: 617–629[12]Zhan Y-X(詹英贤), Wu A-Z(吴爱忠), Cheng M(程明). Karyotype analysis in peanut (Arachis hypogaea L.) of four types. Sci Agric Sin (中国农业科学), 1988, 21(1): 61–67(in Chinese with English abstract)[13]Wang J-B(王建波), Li R-Q(利容千), Zeng Z-S(曾子申). Karyotype studies on three species in Arachis. Acta Agron Sin (作物学报), 1988, 14(4): 284–289 (in Chinese with English abstract)[14]Lavia G I, Aveliano F. Karyotypic studies in Arachis hypogaea L. varieties. Caryologia, 2004, 57: 353–359[15]Sumner A T. Chromosome banding. London: Unwin Hyman, 1990[16]She C-W(佘朝文), Song Y-C(宋运淳). Progress of plant FISH technique and its applications in the analysis of plant genome. J Wuhan Bot Res (武汉植物学研究), 2006, 24(4): 365–376 (in Chinese with English abstract)[17]Raina S N, Mukai Y. Detection of a variable number of 18S-5, 8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome, 1999, 42: 52–59[18]Song Y C, Liu L H, Ding Y, Tian X B, Yao Q, Meng L, He C R, Xu M S. Comparisons of G-banding patterns in six species of the Poaceae. Hereditas, 1994, 121: 31–38[19]She C W, Liu J Y, Song Y C. CPD staining: an effective technique for detection of NORs and other GC-rich chromosomal regions in plants. Biotech Histochem, 2006, 81: 13–21[20]Li M-X(李懋学), Chen R-Y(陈瑞阳). A suggestion on the standardization of karyotype analysis in plants. J Wuhan Bot Res (武汉植物学研究), 1985, 3(4): 297–302 (in Chinese with English abstract)[21]Stebbins G L. Chromosomal Evolution in Higher Plants. London: Edward Arnold Publ. Ltd., 1971[22]Krapovickas A, Gregory W C. Taxonomía del género Arachis (Leguminosae). Bonplandia, 1994, 8: 1–186 |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[4] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[5] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[6] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[7] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[8] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[9] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[10] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[11] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[12] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[13] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[14] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[15] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
|