欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 747-753.doi: 10.3724/SP.J.1006.2012.00747

• 研究简报 • 上一篇    下一篇

基于GreenSeeker的冬小麦NDVI分析与产量估算

王磊,白由路,卢艳丽,王贺,杨俐苹   

  1. 农业部植物营养与肥料重点实验室/中国农业科学院农业资源与农业区划研究所,北京 100081
  • 收稿日期:2011-09-26 修回日期:2012-01-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 基金资助:

    本研究由国家自然科学基金项目(31000937)资助。

NDVI Analysis and Yield Estimation in Winter Wheat based on GreenSeeker

WANG Lei,BAI You-Lu,LU Yan-Li,WANG He,YANG Li-Ping   

  1. Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-09-26 Revised:2012-01-19 Published:2012-04-12 Published online:2012-02-13

摘要: 以2007—2009年连续2个冬小麦生长季的田间试验数据为基础,利用GreenSeeker获取冠层归一化差值植被指数(NDVI),分别对不同氮营养条件下冬小麦的产量变化、冠层NDVI值随施氮量和生育期的动态变化,以及NDVI与产量的相关性定量分析,建立基于NDVI的冬小麦产量估算模型。结果表明,冬小麦的产量变化随施氮量的增加呈抛物线趋势变化;冠层NDVI在返青期前随施氮量增加基本不变,返青期至灌浆初期随施氮量增加呈显著增加趋势;整个生育期冠层NDVI呈现“低–高–低”变化趋势。冬小麦整个生育期不同施氮水平下的NDVI值与产量的相关性均为正相关关系,且相关性随生育期逐渐增强,在灌浆末期达到最大。利用NDVI建立的冬小麦产量估算模型,以灌浆初期(P=0.005)和灌浆末期(P<0.001)的模型达到极显著水平。经验证,灌浆初期的冬小麦产量预测值与实测值的回归关系达到了显著水平(P=0.0129),灌浆末期则达到极显著水平(P=0.0002)。因此,利用灌浆初期和灌浆末期的NDVI值可以预测冬小麦产量,尤以灌浆末期预测效果更佳。

关键词: 冬小麦, 施氮量, 产量, 冠层NDVI, 估算模型

Abstract: The field experiment was carried out in two winter wheat growing seasons during 2007–2009. Winter wheat canopy reflectances in the 656 nm and 770 nm wavelengths were obtained by GreenSeeker at over-wintering stage, reviving stage, jointing stage, early-filling stage, and last-filling stage, respectively, in order to compute NDVI [(NIR770-R656)/(NIR770+R656)]. Yields were collected at harvest stage and compared among different nitrogen application rates. Canopy NDVI changes were analyzed with nitrogen increasing and growth, respectively. Furthermore, correlation analysis was done between yield and canopy NDVI. Yield estimation models were established for winter wheat based on canopy NDVI. Results showed that, winter wheat yield changed in parabola shape with N increasing. Wheat canopy NDVI value presented almost changeless before reviving stage, but great increase from reviving stage to early-filling stage with N increasing. In the whole growth stage, canopy NDVI value presented a trend of “low–high–low”. The correlation between canopy NDVI and yield was positive in the whole growth stage with different N rates and gradually became higher with growth, and up to the highest at the late-filling stage. The yield estimation models based on canopy NDVI at early-filling stage (P=0.005) and late-filling stage (P<0.001) were greatly significant. Regression validated between predicted and measured values was significant at early-filling stage (P=0.0129) and greatly significant at late-filling stage (P=0.0002). So, it is feasible that using canopy NDVI at early-filling stage and late-filling stage estimates winter wheat yield, especially at late-filling stage.

Key words: Winter wheat, Nitrogen application rate, Yield, Canopy NDVI, Estimation models

[1]Chen J F, Chen K M, Xu J B. Research on the remote sensing monitoring of grassland productivity based on TM-NDVI. Agric Sci & Technol, 2011, 12: 119–122

[2]Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric & Forest Meteorol, 2011, 115: 385–393

[3]Hasegawa K, Matsuyama H, Tsuzuki H, Sweda T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures Remote Sens Environ, 2010, 114: 514–519

[4]Aboelghar M, Arafat S, Saleh A, Naeem S, Shirbeny M, Belal A. Retrieving leaf area index from SPOT4 satellite data. The Egypt J Remote Sens Space Sci, 2010, 13: 121–127

[5]Trishchenko A P. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: extension to AVHRR NOAA-17, 18 and METOP-A. Remote Sens Environ, 2009, 113: 335–341

[6]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86: 542–553

[7]Aparicio N, Villegas D, Casadesus J, Araus J L, Royo C. Spectral vegetation indices as non-destructive tools for determining durum wheat yield. Agron J, 2000, 92: 83–91

[8]Soenen S A, Peddle D R, Hall R J, Coburn C A, Hall F G. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens Environ, 2010, 114: 1325–1337

[9]Gianquinto G, Orsini F, Fecondini M, Mezzetti M, Sanbo P, Bona S. A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. Eur J Agron, 2011, 35, 135–143

[10]William R R, Gordon V J. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 91: 357–363

[11]Wu J-H(吴军华), Yue S-C(岳善超), Hou P(侯鹏), Meng Q-F(孟庆峰), Cui Z-L(崔振领), Li W(李雯), Chen X-P(陈新平). Monitoring winter wheat population dynamics using an active crop sensor. Spectroscopy and Spectral Anal (光谱学与光谱分析), 2011, 31(2): 535–538 (in Chinese with English abstract)

[12]Tan C-W(谭昌伟), Wang J-H(王纪华), Zhu X-K(朱新开), Wang Y(王妍), Wang J-C(王君婵), Tong L(童璐), Guo W-S(郭文善). Monitoring main growth status parameters at jointing stage in winter wheat based on Landsat TM images. Sci Agric Sin (中国农业科学), 2011, 44(7): 1358–1366 (in Chinese with English abstract)

[13]Feng M-C(冯美臣), Xiao L-J(肖璐洁), Yang W-D(杨武德), Ding G-W(丁光伟). Predicting grain yield of irrigation-land and dry-land winter wheat based on remotesensing data and meteorological data. Trans CSAE (农业工程学报), 2010, 26(11): 183–188 (in Chinese with English abstract)

[14]Reyniers M, Vrindts E, Baerdemaeker J D. Comparison of an aerial-based system and an on the ground continuous measuring device to predict yield of winter wheat. Eur J Agron, 2006, 24: 87–94

[15]Lu Y-L(卢艳丽), Hu H(胡昊), Bai Y-L(白由路), Wang L(王磊), Wang H(王贺), Yang L-P(杨俐苹). Effects of vegetation coverage on the canopy spectral and yield quantitative estimation in wheat. J Triticeae Crops (麦类作物学报), 2010, 30(1): 96–100 (in Chinese with English abstract)

[16]Feng M-C(冯美臣), Yang W-D(杨武德). Changes in NDVI and yield of winter wheat cultivars with different plant types. Chin J Eco-agric (中国生态农业学报), 2011, 19(1): 87–92 (in Chinese with English abstract)

[17]Ren J-Q(任建强), Chen Z-X(陈仲新), Zhou Q-B(周清波), Tang H-J(唐华俊). Retrieving the spatial-explicit harvest index for winter wheat from NDVI time series data. Trans CSAE (农业工程学报), 2010, 26(8): 160–167 (in Chinese with English abstract)

[18]Hu H(胡昊), Bai Y-L(白由路), Yang L-P(杨俐苹), Lu Y-L(卢艳丽), Wang L(王磊), Wang H(王贺), Wang Z-Y(王志勇). Diagnosis of nitrogen nutrition in winter wheat (Triticum aestivum) via SPAD-502 and GreenSeeker. Chin J Eco-agric (中国生态农业学报), 2010, 18(4): 748–752 (in Chinese with English abstract)

[19]Gou J-H(郭建华), Wang X(王秀), Meng Z-J(孟志军), Zhao C-J(赵春江), Yu Z-R(于振荣), Chen L-P(陈立平). Study on diagnosing nitrogen nutrition status of corn using GreenSeeker and SPAD meter. Plant Nutr Fert Sci (植物营养与肥料学报), 2008, 14(1): 43–47 (in Chinese with English abstract)

[20]Pinter P J, Jackson R D, Idso S B, Reginato R J. Multidate spectral reflectance as predictors of yield inwater stressed wheat and barley. Int J Remote Sens, 1981, 2: 43-48

[21]Mahey R K, Singh R, Sidhu S S, Narang R S. The use of remote sensing to assess the effects of water stress on wheat. Exp Agric, 1991, 27: 423–429

[22]Lukina E V, Freeman K W, Wynn K J, Thomason W E, Mullen R W, Stone M L, Solie J B, Klatt A R, Johnson G V, Elliott R L, Raun W R. Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. J Plant Nutr, 2001, 24: 885–898

[23]Raun W R, Johnson G V, Stone M L, Solie J B, Lukina E V, Thomason W E, Schepers J S. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J, 2001, 93: 131–138

[24]Hansen P M, Jørgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J Agric Sci, 2002, 139: 307–318

[25]Ferrio J P, Villegas D, Zarco J, Aparicio N, Araus J L, Royo C. Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies. Field Corps Res, 2005, 94: 126–148

[26]Moriondo M, Maselli F, Bindi M. A simple model of regional wheat yield based on NDVI data. Eur J Agron, 2007, 26: 266–274

[27]Xue L H, Cao W X, Yang L Z. Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra. Pedosphere, 2007, 17: 646–653

[28]Royo C, Aparicio N, Villegas D, Casadesus J, Monneveux P, Araus J L. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. Int J Remote Sens, 2003, 24: 4403–4419

[29]Freeman K W, Raun W R, Johnson G V, Mullen R W, Stone M L, Solie J B. Late-season prediction of wheat grain yield and grain protein. Comm Soil Sci & Plant Anal, 2003, 34: 1837–1852

[30]Li S-D(李升东), Wang F-H(王法宏), Si J-S(司纪升), Kong L-A(孔令安), Feng B(冯波), Zhang B(张宾). The relationship between normalized difference vegetation index and yield of different genotype wheat varieties. Agric Res Arid Areas (干旱地区农业研究), 2008, 26(6): 47–50 (in Chinese with English abstract)
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!