欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (03): 436-446.doi: 10.3724/SP.J.1006.2012.00436

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦品种百农AK58及其姊妹系的遗传构成分析

李小军,胡铁柱,李淦,姜小苓,冯素伟,董娜,张自阳,茹振钢*,黄勇   

  1. 河南科技学院小麦中心 / 河南省高校作物分子育种重点开放实验室, 河南新乡453003
  • 收稿日期:2011-08-30 修回日期:2011-12-15 出版日期:2012-03-12 网络出版日期:2012-01-09
  • 基金资助:

    本研究由国家科技支撑计划项目(2011BAD07B02)和河南省重大科技专项(111100110100)资助。

Genetic Analysis of Broad-grown Wheat Cultivar Bainong AK58 and Its Sib Lines

LI Xiao-Jun, HU Tie-Zhu, LI Gan, JIANG Xiao-Ling, FENG Su-Wei, DONG Na, ZHANG Zi-Yang, RU Zhen-Gang*,HUANG Yong   

  1. Center of Wheat Breeding, Henan Institute of Science and Technology / Key Discipline Open Laboratory on Crop Molecular Breeding of Henan Institute, Xinxiang 453003, China
  • Received:2011-08-30 Revised:2011-12-15 Published:2012-03-12 Published online:2012-01-09

摘要: 百农AK58是目前我国黄淮南部麦区大面积种植的小麦品种。利用表型、高分子量麦谷蛋白亚基、蛋白质含量及覆盖小麦全基因组的657对SSR分子标记分析了百农AK58姊妹系及其亲本的遗传构成, 以发现大面积品种的亲本选配规律。百农AK58在小穗数、穗粒数、千粒重和单株穗数上略优于其姊妹系丰收60和百农4330。百农AK58的高分子量谷蛋白亚基组合与亲本郑州8960相同, 为(1, 7+8, 5+10), 其姊妹系丰收60和百农4330的亚基组合与亲本温麦6号相同, 均为(1, 7+9, 5+10)。SSR标记分析表明, 百农AK58对亲本周麦11、温麦6号和郑州8960遗传成分的继承率分别为47.4%、28.9%和23.7%, 而丰收60的继承率分别为47.9%、30.7%和21.4%。可见, 这2个品种在遗传上与周麦11有较大的相似性。百农4330继承这3个亲本的遗传成分比例非常相近, 分别为33.1%、32.4%和34.6%。在A、B、D基因组及染色体水平上, 3个亲本品种对后代的遗传贡献率也表现不均衡性。百农AK58有40个不同于丰收60和百农4330的SSR特异位点, 主要分布于1A、4A、5A、6A、1B、4B、5B、6B、7B、1D、2D、3D和7D染色体, 其中多数位点已知存在与产量、抗病等重要农艺性状相关的基因, 推测这些特异位点在百农AK58成为大面积种植品种中发挥了重要作用。

关键词: 百农AK58, 高分子量谷蛋白亚基, 蛋白质含量, SSR, 遗传分析

Abstract: Bainong AK58 has been growing widely in Southern Huang-Huai Rivers Facultative Winter Wheat Region in China. Bainong AK58 and its two sib lines, Fengshou 60 and Bainong 4330, were evaluated based on agronomic traits, high-molecular-weight glutenin subunit (HMW-GS), protein content, and 657 SSR markers distributing across the whole genome of wheat. Bainong AK58 had more spikelets, grains per spike, spikes per plant, and larger 1000-grain weight than the sib lines, and the number of sterile spikelets in Bainong AK58 was less than that in Fengshou 60 and Bainong 4330. Bainong AK58 had the same HMW-GS composition (1, 7+8, 5+10) as its parent Zhengzhou 8960, whereas Fengshou 60, Bainong 4330 and their parent Wenmai 6 had the identical HMW-GS composition (1, 7+9, 5+10). SSR data revealed that the rates of genetic information inherited from parents Zhoumai 11, Wenmai 6, and Zhenzhou 8960 were 47.4%, 28.9%, and 23.7% for Bainong AK58, and 47.9%, 30.7%, and 21.4% for Fengshou 60, respectively. This indicated that Bainong AK58 and Fengshou 60 were most similar to parent Zhoumai 11. Bainong 4330 inherited nearly equal genetic components from the three parents (33.1%, 32.4%, and 34.6%, respectively). The genetic contributions from the three parents to the three sib lines were unbalanced on either genomic level or chromosomal level. Furthermore, Bainong AK58 had 40 specific SSR loci compared to its sib lines, which were distributed on chromosomes 1A, 4A, 5A, 6A, 1B, 4B, 5B, 6B, 7B, 1D, 2D, 3D, and 7D. Most of the loci were related to known genes controlling important traits, such as yield and resistance to diseases. These loci might play an important role on the broad planting of Bainong AK58.

Key words: Bainong AK58, High-molecular-weight glutenin subunit, Protein content, SSR markers, Genetic analysis

[1]Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing: China Agri- culture Press, 2003 (in Chinese)

[2]Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31-42

[3]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Oryza ru?pogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield- related traits. Theor Appl Genet, 2006, 112: 570-580

[4]Ordas B, Malvar R A, Santiago R, Sandoya G, Romay M C, Butron A. Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 × Mo17 (IBM) population of maize. Theor Appl Genet, 2009, 119: 1451-1459

[5]Lin F, Xue S L, Zhang Z Z, Zhang C Q, Kong Z X, Yao G Q, Tian D G, Zhu H L, Li C J, Cao Y, Wei J B, Luo Q Y, Ma Z Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419 ? Wangshuibai population: II. Type I resistance. Theor Appl Genet, 2006, 112: 528-535

[6]An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, Jing R, Li B, Li Z. Mapping QTL for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant & Soil, 2006, 284: 73-84

[7]Qin J(秦君), Chen W-Y(陈维元), Guan R-X(关荣霞), Jiang C-X(姜成喜), Li Y-H(李英惠), Fu Y-S(付亚书), Liu Z-X(刘章雄), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Genetic contribution of foreign germplasm to elite Chinese soybean (Glycine max) cultivars revealed by SSR markers. Chin Sci Bull (科学通报), 2006, 51(6): 681-692 (in Chinese)

[8]Ge H-M(盖红梅), Wang L-F(王兰芬), You G-X(游光霞), Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Zhang X-Y(张学勇). Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin (中国农业科学), 2009, 42(5): 1503-1511 (in Chinese with English abstract)

[9]Yuan Y-Y(袁园园), Wang Q-Z(王庆专), Cui F(崔法), Zhang J-T(张景涛), Du B(杜斌), Wang H-G(王洪刚). Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin (作物学报), 2010, 36(1): 9-16 (in Chinese with English abstract)

[10]Zhang X-Y(张学勇), Dong Y-C(董玉琛), You G-X(游光侠), Wang L-F(王兰芬), Li P(李培), Jia J-Z(贾继增). Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years. Sci Agric Sin (中国农业科学), 2001, 34(4): 355-362 (in Chinese with English abstract)

[11]Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high- molecular-weight subunits of glutein in hexaploid wheat. Cereal Res Commun, 1983, 11: 29-35

[12]Singh K, Chhuneja P, Singh I, Sharma S K, Garg T, Garg M, Keller B, Dhaliwal H S. Molecular mapping of cereal cyst nematode resistance in Triticum monococcum L. and its transfer to the genetic background of cultivated wheat. Euphytica, 2010, 176: 213-222

[13]Mason R E, Mondal S, Beecher F W, Pacheco A, Jampala B, Ibrahim A M H, Hays D B. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 2010, 174: 423-436

[14]Wu P, Liu B, Chen J, Sun C, Tian J. QTL analysis of textural property traits for Chinese northern-style steamed bread. Euphytica, 2011, 179: 265-276

[15]Munkvold J D, Tanaka J, Benscher D, Sorrells M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet, 2009, 119: 1223-1235

[16]Mason R E, Mondal S, Beecher F W, Hays D B. Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L.) to lower leaf and spike temperatures under controlled conditions. Euphytica, 2011, 180: 181-194

[17]Conti V, Roncallo P F, Beaufort V, Cervigni G L, Miranda R, Jensen C A, Echenique V C. Mapping of main and epistatic effect QTLs associated to grain protein and gluten strength using a RIL population of durum wheat. J Appl Genet, 2011, 52: 287-298

[18]Manickavelu A, Kawaura K, Imamura H, Mori M, Ogihara Y. Molecular mapping of quantitative trait loci for domestication traits and ?-glucan content in a wheat recombinant inbred line population. Euphytica, 2011, 177: 179-190

[19]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155-1166

[20]Sun X, Marza F, Ma H, Carver B F, Bai G. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet, 2010, 120: 1041-1051

[21]Båga M, Chodaparambil S V, Limin A E, Pecar M, Fowler D B, Chibbar R N. Identification of quantitative trait loci and asso- ciated candidate genes for low-temperature tolerance in cold- hardy winter wheat. Funct Integr Genomics, 2007, 7: 53-68

[22]Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H S, Chhuneja P, Lagu M, Gupta V. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet, 2010, 51: 421-429

[23]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883

[24]Huang X Q, Kempf H, Ganal M W, Röder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 933-943

[25]Reif J C, Maurer H P, Korzun V, Ebmeyer E, Miedaner T, Würschum T. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet, 2011, 123: 283-292

[26]Lu Y, Lan C, Liang S, Zhou X, Liu D, Zhou G, Lu Q, Jing J, Wang M, Xia X, He Z. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009, 119: 1349-1359

[27]Maccaferri M, Mantovani P, Tuberosa R, DeAmbrogio E, Giuliani S, Demontis A, Massi A, Sanguineti M C. A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet, 2008, 117: 1225-1240

[28]Mohan A, Kulwal P, Singh R, Kumar V, Mir R R, Kumar J, Prasad M, Balyan H S, Gupta P K. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica, 2009, 168: 319-329

[29]Wang J, Liu W, Wang H, Li L, Wu J, Yang X, Li X, Gao A. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 277-292

[30]Rosewarne G M, Singh R P, Huerta-Espino J, Rebetzke G J. Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identi?ed with multi-environment analysis. Theor Appl Genet, 2008, 116: 1027-1034

[31]Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet, 2009, 119: 383-395

[32]Wang Q-Z(王庆专), Yuan Y-Y(袁园园), Cui F(崔法), Zhao C-H(赵春华), Du B(杜斌), Zhang J-T(张景涛), Wang H-G(王洪刚). Genetic differentiation analysis on the wheat backbone pa- rent Bima No.4 and its four sib-lines. Mol Plant Breed (分子植物育种), 2009, 7(6): 1100-1105 (in Chinese with English abstract)

[33]Sjakste T G, Rashal I, Röder M S. Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theor Appl Genet, 2003, 106: 539-549

[34]Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S J. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor Appl Genet, 1997, 80: 833-840
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[6] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[7] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[8] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[9] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[10] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[11] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[12] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[13] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[14] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[15] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!