欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 935-946.doi: 10.3724/SP.J.1006.2012.00935

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

ICRISAT花生微核心种质农艺性状和黄曲霉抗性关联分析

黄莉**,任小平**,张晓杰,陈玉宁,姜慧芳*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室,湖北武汉 430062
  • 收稿日期:2011-11-01 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-04-06
  • 通讯作者: 姜慧芳, E-mail: peanutlab@oilcrops.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109300), 农作物种质资源保护项目(NB2010-2130135-28B)和国家现代农业产业技术体系建设(CARS-14-种质资源评价)资助。

Association Analysis of Agronomic Traits and Resistance to Aspergillus flavus in the ICRISAT Peanut Mini-Core Collection

HUANG Li**,REN Xiao-Ping**,ZHANG Xiao-Jie,CHEN Yu-Ning,JIANG Hui-Fang*   

  1. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
  • Received:2011-11-01 Revised:2012-02-22 Published:2012-06-12 Published online:2012-04-06
  • Contact: 姜慧芳, E-mail: peanutlab@oilcrops.cn

摘要: 以国际半干旱热带地区作物研究所(ICRISAT)花生微核心种质146份资源为品种,鉴定农艺性状和黄曲霉抗性,用26对SSR引物检测多态性位点,在分析连锁不平衡、群体结构和Kinship的基础上进行关联分析。连锁不平衡的分布显示R2平均值为0.185,表明26对SSR引物扩增的120个位点之间具有较低的连锁不平衡程度。群体结构分析结果将146份花生品种分为2个亚群,分别对应疏枝亚种和密枝亚种,与植物学分类和遗传分化分析的结果基本一致。关联分析表明,共有39个位点与10个农艺性状(株高、总分枝数、第一分枝数、小叶宽、结果分枝数、百果重、出仁率、单株生产力、种子长、种子宽)相关联,表型变异解释率为1.50%~20.34%,16个SSR位点与黄曲霉侵染病情指数、黄曲霉产毒量相关联,表型变异解释率为5.23%~17.19%,与农艺性状、黄曲霉抗性同时相关联的SSR位点有13个。关联位点的等位变异效应分析表明,10个农艺性状和2个黄曲霉抗性性状共有63个增效等位变异和47个减效等位变异,并发掘了ICG6022等携有优良等位变异的载体品种。

关键词: 花生, 微核心种质, SSR标记, 关联分析

Abstract: Yield is an important trait in peanut breeding, which is strongly influenced by environments and complex genetic factors. Association mapping, based on natural population and linkage disequilibrium (LD), has been successfully used for exploring the genetic basis of complex traits in crops. In this study, we introduced a set of peanut mini-core collection of 146 varieties from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), which were phenotyped for agronomic traits and resistance to Aspergillus flavus and genotyped by using 26 SSR primers containing 120 loci in the population. Based on the analyses of linkage disequilibrium, population structure and kinship, we performed the genome-wide association mapping. Distribution of LD suggested that the average of the total R2 was 0.185, indicating a relative low level of LD between the SSR loci. One hundred sixty-four varieties were grouped into two subgroups by population structure analysis corresponding to Arachis hypogaea ssp. fastigiata and Arachis hypogaea spp. hypogaea, respectively, which was consistent with botanical classification and results of analysis of genetic differentiation. A total of 39 loci were identified to be associated with ten agronomic traits, with 1.50%~20.34% of phenotypic variation explained. A total of 16 loci were associated with Aspergillus flavus infection index and aflatoxin amount, with 5.23%~17.19% of explained phenotypic variation. Of which, 13 common loci were associated with both agronomic traits and resistance to Aspergillus flavus. Furthermore, 63 alleles with increasing effect, 47 alleles with decreasing effect and the varieties carrying them were identified for ten agronomic and two resistance-related traits. This study demonstrates that association mapping is effective to explore genetic basis of important traits in peanut and assist to peanut breeding.

Key words: Arachis hypogaea L., Mini-core collection, SSR marker, Association analysis

[1]Sun D-R(孙大容). Peanut Breeding (花生育种学). Beijing: China Agriculture Press, 1998. pp 1-147 (in Chinese)

[2]Ren X-P(任小平), Zhang X-J(张晓杰), Liao B-S(廖伯寿), Lei Y(雷永), Huang J-Q(黄家权), Chen Y-N(陈玉宁), Jiang H-F(姜慧芳). Analysis of genetic diversity in ICRISAT mini core collection of peanut (Arachis hypogaea L.) by SSR markers. Sci Agric Sin (中国农业科学), 2010, 43(14): 2848-2858 (in Chinese with English abstract)

[3]Wan S-B(万书波). Chinese Peanut Cultivation (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 1-15 (in Chinese)

[4]Nevano G. Studies de alkune correlazion nell arachide (Arachis hypogaea L.). Stazioni Sperimentali Agrarie Italiane, 1924, 57(1-3): 17-33

[5]Yang X-H(阳小虎), Peng C-J(彭昌家), Cheng L(程林). Correction and path analysis to pod weight per plant and plant traits of peanut. Peanut Sci Technol (花生科技), 1986, (2): 33-35 (in Chinese)

[6]Liu E-S(刘恩生). Diallel Analysis for yield, protein and oil content of peanut. Acta Agric Boreali-Sin (华北农学报), 1987, 2(3): 18-26 (in Chinese with English abstract)

[7]Xu Y-M(徐宜民), Gan X-M(甘信民), Gu S-Y(顾淑媛), Cao Y-L(曹玉良), Liu F-S(刘法生). Correction and path analysis to the main agronomic trait and yield trait of peanut. Peanut Sci Technol (花生科技), 1992, (2): 24-28 (in Chinese)

[8]Liao X-M(廖小妹), Li L-R(李丽容), Zheng G-R(郑广柔), Li S-L(黎穗临). Correction and path analysis to the oil content, protein content and agronomic trait of Arachis hypogaea tvar. vulgaris. Peanut Sci Technol (花生科技), 1992, (3): 15-17 (in Chinese)

[9]Jiang H-F(姜慧芳), Ren X-P(任小平), Wang S-Y(王圣玉). Evaluation for resistance to invasion and aflatoxin contamination caused by Aspergillus flavus in groundnut. Chin J Oil Crop Sci (中国油料作物学报), 2005, 27(3): 21-25 (in Chinese with English abstract)

[10]Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88

[11]Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler K A, Meeley R, Ananiev E V, Sviashev S, Bruggemann E, Li B, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376-11381

[12]Briggs W, Mcmullen M D, Gaut B S, Doebley J. Linkage mapping of domestication loci in a large maize-teosinte backcross resource. Genetics, 2007, 177: 1915-1928

[13]Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene associations. Plant Cell, 2004, 16: 2719-2733

[14]Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinski S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T, Yan J, Buckler E S. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008, 319: 330-333

[15]Yan J, Shah T, Warburton M L, Buckler E S, McMullen M D, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 2009, 4: e8451

[16]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356

[17]Iwata H, Ebana K, Uga Y, Hayashi T, Jannink J. Genome-wide association study of grain shape variation among Oryza sativa L. germplasms based on elliptic Fourier analysis. Mol Breed, 2010, 25: 203-215

[18]Wen W, Mei H, Feng F, Yu S, Huang Z, Wu J, Chen L, Xu X, Luo L. Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm office(Oryza sativa L.). Theor Appl Genet, 2009, 119: 459-470

[19]Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux M J, Delourme R. Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed, 2010, 27: 1-17

[20]Belamkar V, Selvaraj M G, Ayers J L, Payton P R, Puppala N, Burow M D. A first sight into population structure and linkage disequilibrium in the US peanut mini-core collection. Genetica, 2011, 139: 411-429

[21]Wang M L, Sukumaran S, Barkley N A, Chen Z, Chen C Y, Guo B, Pittman R N, Stalker H T, Holbrook C C, Pederson G A, Yu J. Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet, 2011, DOI 10.1007/s00122-011-1668-7

[22]Jiang H-F(姜慧芳), Duan N-X(段乃雄). Descriptors and Data Standard for Peanut (Arachis spp.)(花生种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. pp 83-84 (in Chinese)

[23]Chen B-Y(陈本银), Jiang H-F(姜慧芳), Liao B-S(廖伯寿), Ren X-P(任小平). Phylogenetic relationship among the species in genus Arachis through SSR. J Plant Genet Resour (植物遗传资源学报), 2007, 8(2): 140-144 (in Chinese with English abstract)

[24]Breseghello F and Mark E S. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177

[25]Hasan M, Friedt W, Pons-Kühnemann J, Freitag N M, Link K, Snowdon R J. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet, 2008, 116:1035-1049

[26]Pritchard J K, Stephens M, Donnelly P. Inference of population structrue using multilocus genotype data. Genetics, 2000, 155: 945-959

[27]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129

[28]Excoffier L, Laval G, Schneider S. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform, 2005, (1): 47-50

[29]Weir B, Cockerham C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38: 1358-1370

[30]Hardy O J, Vekemans X. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618-620

[31]Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B.A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208

[32]Yang X, Yan J, Shah T, Warburton M, Li Q, Li L, Gao Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet, 2010, 121: 417-431

[33]Malysheva-Otto L V, Ganal M, Roder M S. Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet, 2006, 7: 6

[34]Flint-Garcia S A, Thornsberry J M, S E, Iv Buckler. Stucuture of linkage disequilibrium in plants. Ann Rev Plant Biol, 2003, 54: 357-374

[35]Liu K, Goodman M, Muse S, Smith J S, Buckler E, Doebley J. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 2003, 165: 2117-2128

[36]Song B H, Windsor A J, Schmid K J, Ramos-Onsins S, Schranz M E, Heidel A J, Mitchell-Olds T. Multilocus patterns of nucleotide diversity, population structure and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics, 2009, 181: 1021-1033

[37]Brown A H D. Core cllections: a practical approach to genetic resources management. Genome, 1989, 31: 818-824

[38]Myles S, Peiffer J, Brown P J, Ersoz E S, Zhang Z, Costich D E, Buckler E S. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell, 2009, 21: 2194-2202

[39]Ersoz E S, Yu J, Buckler E S. Genomics-assisted crop improvement. Dordrecht, the Netherlands: Springer, 2007. pp 97-120

[40]Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet, 2008, 116: 777-787

[41]Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162

[42]Huang X, Paulo M J, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk F A. Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci USA, 2011, 18: 4488-4493

[43]Yan J, Kandianis C B, Harjes C E, Bai L, Kim E H, Yang X, Skinner D J, Fu Z, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R, Fu Y, Palacios Natalia, Li J, DellaPenna D, Brutnell T, Buckler E S, Warburton M L, Rocheford T. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet, 2010, 42: 322-327

[44]He G, Meng R, Newman M, Gao G, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (A. hypogaea L.). BMC Plant Biol, 2003, 3: 3

[45]Moretzsohn M C, Leoi L, Proite K, Guimaraes P M, Leal-Bertioli S C M, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060-1071
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[9] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[10] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[11] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[12] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[13] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[14] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[15] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!