欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 954-961.doi: 10.3724/SP.J.1006.2012.00954

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

鲁麦14对山东新选育小麦品种的遗传贡献

盖红梅1,李玉刚1,王瑞英1,李振清1,王圣健1,高峻岭1,*,张学勇2,*   

  1. 1青岛市农业科学研究院 / 农业部黄淮海作物遗传改良与生物技术重点开放实验室, 山东青岛 266100;2中国农业科学院作物科学研究所 / 农业部作物基因资源与种质创制重点开放实验室,北京 100081
  • 收稿日期:2011-11-08 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 高峻岭, E-mail: qingdaocrop@sina.com; 张学勇, E-mail: xueyongz@caas.net.cn
  • 基金资助:

    本研究由国家现代农业产业体系项目(CARS-3-1-2)和青岛市科技计划项目(09-1-1-69-nsh, 10-3-4-14-1-jch)资助。

enetic Contribution of Lumai 14 to Novel Wheat Varieties Developed in Shandong Province

GE Hong-Mei1,LI Yu-Gang1,WANG Rui-Ying1,LI Zhen-Qing1,WANG Sheng-Jian1,GAO Jun-Ling1,*,ZHANG Xue-Yong2,*   

  1. 1 Qingdao Academy of Agricultural Sciences / Key Laboratory of Huanghuaihai Crop Genetic Improvement and Biotechnology, Ministry of Agriculture, Qingdao 266100, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China
  • Received:2011-11-08 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 高峻岭, E-mail: qingdaocrop@sina.com; 张学勇, E-mail: xueyongz@caas.net.cn

摘要: 为了解骨干亲本鲁麦14对山东新选育小麦品种的遗传贡献,对鲁麦14及其6个衍生品种(系)进行了全基因组SSR扫描分析。在350个SSR位点上共检测到662个等位变异,每个位点1~5个等位变异,平均1.9个, 位点平均多态性指数(PIC)为0.21。UPGMA聚类分析表明,济麦22和鲁麦14聚为一类、青丰系列4个品种(系)聚为一类,这两类形成一个大的分支,而济麦20与这些品种的关系较远。在所检测的350个位点中,与鲁麦14相同的位点数,济麦22有235个(67.1%), 济麦20有210个(60.0%), 青丰1号有229个(65.4%), 青农2号有247个(70.6%)。这些相同位点多数以一个大的染色体区段传递至子代,且有的区段在6个衍生品种(系)中共享,如5A的gwm304–barc360–gwm415–barc1区段和6D的barc196–gdm127–barc123区段等。济麦22在21条染色体上都有与鲁麦14相同的位点,但染色体间差异较大,相同位点比例超过70%的染色体有3A、4A、7A,2B、4B、7B、1D、3D和4D;相同位点比例最低的是3B,仅46%。同一连锁群上,位点之间多呈连续区段分布,大多与已发现的重要性状分布簇相吻合。因此认为,鲁麦14的优良遗传背景对济麦22有重要贡献。在育种实践中,除需关注重要基因的导入外,还应注意骨干材料主体背景的选择。

关键词: 鲁麦14, 济麦22, SSR标记, 聚类分析, 遗传贡献

Abstract: Lumai 14 is a semi-dwarf high-yield wheat variety developed in the mid of 1980s, which is also a backbone parent of more than 30 wheat varieties released in China. This study aimed to understand the genetic contribution of Lumai 14 to its derivate varieties and lines at the genomic level. Using 350 SSR markers covering the whole wheat genome, the alleles of Lumai 14 were screened in six Lumai 14 derivants and Yannong 15 (another parent of Qingfeng series). A total of 662 alleles were obtained on the 350 loci, and each locus had 1–5 alleles with an average of 1.9 alleles. The polymorphism information content (PIC) was 0.21. In the UPGMA dendrogram, Jimai 22 and Lumai 14 were clustered together firstly, and further grouped with Qingfeng series. Lumai 20 showed relative large genetic distance to the backbone parent. The derivants of Lumai 14 shared common loci with their parents with percentages of 67.1% (235/350) for Jimai 22, 60.0% (210/350) for Jimai 20, 65.4% (229/350) for Qingfeng 1, and 70.6% (247/350) for Qingnong 2. Most of these loci were assembled on 21 chromosomes, and some of them, such as regions gwm304–barc360–gwm415–barc1 on chromosome 5A and barc196–gdm127–barc123 on chromosome 6D, were shared in six Lumai 14 derivants. In Jimai 22, alleles inherited from Lumai 14 varied among chromosomes, and chromosomes 3A, 4A, 7A, 2B, 4B, 7B, 1D, 3D, and 4D contained more than 70% of Lumai 14 alleles, whereas chromosome 3B showed the lowest percentage of 46%. These alleles from Lumai 14 were mainly distributed in several regions on each chromosome, which proved to harbor genes/QTLs for important traits in QTL analysis and association analysis. Therefore, we conclude that the elite background of Lumai 14 contributed greatly to Jimai 22. In breeding practices, background selection should be highly considered besides the transmission of elite target genes.

Key words: LM-14, JM- 22, SSR, Clustering Analysis, Genetic Contribution

[1]Wang Y-X(王玉心), Mou C-S(牟春生). Growing characteristics and high-yield cultivation of Lumai 14. Shandong Agri Sci (山东农业科学), 1992, (6): 13-14 (in Chinese)

[2]Fang Z(方正), Liu W-Z(刘维正), Yang J-S(杨今胜), Zhai D-F(翟冬峰), Liu W-G(刘为更). Strategy to improve wheat germplasm resource in view of the breeding of Lumai 14. J Triticeae Crops (麦类作物学报), 2005, 25(6): 121–124 (in Chinese with English abstract)

[3]Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing: Agriculture Press, 2003. pp 117–118 (in Chinese)

[4]Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 1989, 44: 397

[5]Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucl Acid Res, 1992, 20: 211–215

[6]You G X, Zhang X Y, Wang L F. An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: Information from 96 random accessions with maximized genetic diversity. Mol Breed, 2005, 14: 397–406

[7]Wang L-F(王兰芬), Balfourier F, Hao C-Y(郝晨阳), Exbrayat F, Dong Y-C(董玉琛), Ge H-M(盖红梅), Zhang X-Y(张学勇). Comparison of genetic diversity level between European and East-Asian wheat collections using SSR markers. Sci Agric Sin (中国农业科学), 2007, 40(12): 2667–2678 (in Chinese with English abstract)

[8]Yuan Y-Y(袁园园), Wang Q-Z(王庆专), Cui F(崔法), Zhang J-T(张景涛), Du B(杜斌), Wang H-G(王洪刚). Specific loci in gnome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin (作物学报), 2010, 36(1): 9–16 (in Chinese with English abstract)

[9]Han J(韩俊), Zhang L-S(张连松), Li J-T(李婧婷), Shi L-J(石丽娟), Xie C-J(解超杰), You M-S(尤明山), Yang Z-M(杨作民), Liu G-T(刘广田), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin (作物学报), 2009, 35(8): 1395–1404 (in Chinese with English abstract)

[10]Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Ge H M, Jia J Z, Zhang X Y. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chin Sci Bull, 2008, 53: 1518–1526

[11]Hao, C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PloS One, 2011, e 6(2): e17279. doi: 10.1371/journal.pone.0017279

[12]Sun H-M(孙慧敏), Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Association analysis between submergence tolerance and SSR markers in domestic and foreign soybean cultivars in Asia. Acta Agron Sin (作物学报), 2010, 36(10): 1615–1623 (in Chinese with English abstract)

[13]Devos K M, Gale M D. The use of random amplified polymorphic DNA marker in wheat. Theor Appl Genet, 1992, 84: 567–572

[14]Ge H-M(盖红梅), Wang L-F(王兰芬), You G-X(游光霞), Hao C-Y(郝晨阳), Zhang X-Y(张学勇). Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin (中国农业科学), 2009, 42(5): 1503–1511 (in Chinese with English abstract)

[15]Ren M(任民), Jia X-H(贾兴华), Jiang C-H(蒋彩虹), Yang A-G(杨爱国), Wang R-X(王日新). Comparison study of Bassam and Sanguinetti silver staining in the detecting of SRAP and TRAP. Bio/ Bull (生物技术通报), 2008, (1): 113–116 (in Chinese with English abstract)

[16]Tang H-J(唐怀君), Yin G-H(殷贵鸿), Xia X-C(夏先春), Feng J-J(冯建军), Qu Y-Y(曲延英), He Z-H(何中虎). Evaluation of molecular markers specific for 1BL/1RS translocation and characterization of 1RS chromosome in wheat varieties from different origins. Acta Agron Sin (作物学报), 2009, 35(11): 2107–2115 (in Chinese with English abstract)

[17]Liu K and Muse S V. PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics, 2005, 21: 2128–2129

[18]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599

[19]Reimer S, Pozniak C J, Clarke F R, Clarke J M, Somers D J, Knox R E, Singh A K. Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome, 2008, 51: 1016–1025

[20]Ge H-M(盖红梅). Selection sweeps in Chinese major cultivars of Triticum aestivum L. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2008 (in Chinese with English abstract)

[21]Zhang W, Chao S, Manthey F, Chicaiza O, Brevis J C, Echenique V, Dubcovsky J. QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet, 2008, 117: 1361–1377

[22]Zhang L P, Xu X Q, Zhao C P, Shan F H, Yuan S H, Sun H. QTL analysis of plant height in photoperiod-thermo sensitive male sterile wheat. Mol Plant Breed, 2011, 2: 92–97

[23]An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant & Soil, 2006, 284: 73–84

[24]Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Dong Y S, Li Z S. Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Agric Sci China, 2007, 6: 255–264

[25]Genc Y, Oldach K, Verbyla A P, Lott G, Hassan M, Tester M, Wallwork H, McDonald G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet, 2010, 121: 877–894

[26]Snape J W, Foulkes M J, Simmonds J, Leverington M, Fish L J, Wang Y K, Ciavarrella M. Dissectiong gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica, 2007, 154: 401–408

[27]Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211–223

[28]Zhou X-G(周晓果), Jing R-L(景蕊莲), Hao Z-F(郝转芳), Chang X-P(昌小平), Zhang Z-B(张正斌). Mapping QTL for seedling root traits in common wheat. Sci Agric Sin (中国农业科学), 2005, 38(10): 1951–1957 (in Chinese with English abstract)

[29]Ge H M, You G X, Wang L F, Hao C Y, Dong Y S, Li Z S, Zhang X Y. Genome selection sweep and association analysis shed light on future breeding by design in wheat. Crop Sci, 2012, doi: 10.2135/cropsci201

[30]Lai J S, Li R Q, Xu X, J W W, Xu M L, Zhao H N, Xiang Z K, Song W B, Ying K, Zhang M, Jiao Y P, Ni P X, Zhang J G, Li D, Guo X S, Ye K X, Jian M, Wang B, Zheng H S, Liang H Q, Zhang X Q, Wang S C, Chen S J, Li J S, Fu Y, Springer N M, Yang H M, Wang J, Dai J R, Schnable P S, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet, 2010, 42: 1027–1030

[31]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PloS One, 2012, 7(2): e29432
[1] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 杨正钊, 王梓豪, 胡兆荣, 辛明明, 姚颖垠, 彭惠茹, 尤明山, 宿振起, 郭伟龙. 小麦主栽品种济麦22与良星99的基因组序列多态性比较分析[J]. 作物学报, 2020, 46(12): 1870-1883.
[6] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[7] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[8] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[9] 乔玲,刘成,郑兴卫,赵佳佳,尚保华,马小飞,乔麟轶,盖红梅,姬虎太,刘建军,张建诚,郑军. 小麦骨干亲本临汾5064单元型区段的遗传解析[J]. 作物学报, 2018, 44(6): 931-937.
[10] 李玉刚, 任民, 孙绿, 王圣健, 韩梅, 李振清, 翟晓灵, 代小雁, 侯元江, 盖红梅. 利用SSR和SNP标记分析鲁麦14对青农2号的遗传贡献[J]. 作物学报, 2018, 44(02): 159-168.
[11] 刘天鹏,董孔军,董喜存,何继红,刘敏轩,任瑞玉,张磊,杨天育. 12C6+离子束辐照糜子诱变突变群体的构建与SSR分析[J]. 作物学报, 2018, 44(01): 144-156.
[12] 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102.
[13] 张贵合,郭华春. 马铃薯不同品种(系)的光合特性比较与聚类分析[J]. 作物学报, 2017, 43(07): 1067-1076.
[14] 王瑞云,季煦,陆平,刘敏轩,许月,王纶,王海岗,乔治军. 利用荧光SSR分析中国糜子遗传多样性[J]. 作物学报, 2017, 43(04): 530-548.
[15] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!