欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (01): 95-99.doi: 10.3724/SP.J.1006.2008.00095

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米低植酸自交系的筛选与遗传机理的初步研究

王晖1;陈景堂2;刘丽娟1;陈浩1;刘国振1,*   

  1. 1河北农业大学生命科学学院; 2河北农业大学农学院, 河北保定 071000

  • 收稿日期:2007-04-03 修回日期:1900-01-01 出版日期:2008-01-12 网络出版日期:2008-01-12
  • 通讯作者: 刘国振

Identification of Maize Low Phytic Acid Inbred Lines and Primary Study of Its Genetic Mechanism

WANG Hui1,CHEN Jing-Tang2,LIU Li-Juan1,CHEN Hao1,LIU Guo-Zhen1*   

  1. 1 College of Life Sciences; 2 College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China

  • Received:2007-04-03 Revised:1900-01-01 Published:2008-01-12 Published online:2008-01-12
  • Contact: LIU Guo-Zhen

摘要:

玉米、小麦、水稻及豆类籽粒中的植酸, 通常被看作抗营养因子, 所以培育低植酸作物具有重要的应用价值。本试验通过对20份玉米自交系的无机磷含量分析, 发现齐319的无机磷含量接近0.93 mg mg-1, 远高于一般材料(0.15 mg mg-1)。进一步分析表明, 其植酸磷含量为1.31 mg mg-1, 与意大利Nielsen实验室2003年报道的玉米低植酸突变体lpa24/ lpa2411植酸磷含量(1.20 mg mg-1)接近, 显著低于Lpa241/Lpa241野生型和常规的玉米自交系(>2.8 mg mg-1)。对齐319低植酸性状的初步遗传分析表明, 其控制基因呈隐性遗传并可能与lpa241/lpa241基因等位, 但与lpa241/lpa241突变体中肌醇-3-磷酸合成酶(MIPS)蛋白表达量下降不同, 齐319的MIPS蛋白质表达量显著增加, 暗示二者的低植酸性状都与MIPS的异常表达有关, 但二者的控制机理不同。

关键词:

玉米, 自交系, 低植酸, 肌醇-3-磷酸合成酶(MIPS)

Abstract:

It is well known that the phytic acid (myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate or Ins P6) in maize (Zea mays), wheat (Triticum compactum), rice (Oryza sativa), and soybean (Glycine max) is an anti-nutritional factor in grains, phytic acid typically
represents approximately 80% of maize seed total phosphorus. The identification of mutants with low phytic acid (lpa) is a possible solution to solve the problem. In this study, the content of inorganic phosphorus of twenty maize inbred lines were analyzed by colorimetric reagent, the inorganic phosphorus content of Qi 319 was about 0.93 mg mg-1, which was higher than that of control material
(0.15 mg mg-1), further investigation of phytic acid based on standard curve indicated that the content of phytic acid in Qi 319 grains was 1.31 mg mg-1, close to the maize lpa241/lpa241 mutant (1.20 mg mg-1) identified by Nielsen’s laboratory in 2003, which was
significantly lower than that of Lpa241/Lpa241 wild type and control maize inbred lines (>2.8 mg mg-1). F1 seeds derived from Qi
319 and wild type Lpa241/Lpa241 crossing showed low inorganic phosphorus, indicated that the gene controlling low phytic acid of
Qi 319 was recessive, homozygous low phytic acid seed was identified from Qi 319 ×/Lpa241/lpa241 F1 seeds suggested that lpa loci of Qi 319 may allelic to lpa241/lpa241. To investigate the mechanism of lpa in Qi 319, the content of myo-inositol-3-phophate
synthase (MIPS) was assayed Western blot by using anti-MIPS antibody derived from Arabidopsis MIPS protein, according to se
quence analysis, the similarity of amino acid between maize and Arabidopsis MIPS protein is 88%. In contrast with the low content of
MIPS in lpa241/lpa241, the expression of MIPS in Qi 319 increased significantly, suggesting that both mutants are related to MIPS,
but their mechanism is different from each other. It is worthwhile to point out that the agronomic behavior of reported lpa mutant is not satisfying for breeding applications, while Qi 319 is a wildly used inbred line with several combinations in production. This discovery will broaden its application and provide a novel resource for lpa breeding program.

Key words:

Maize, Inbred line, Low phytic acid, MIPS

[1] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[2] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[3] 刘江宁,王楚鑫,张宏根,缪一栩,高海林,许作鹏,刘巧泉,汤述翥. 水稻黑条矮缩病抗性QTL定位[J]. 作物学报, 2019, 45(11): 1664-1671.
[4] 赵佳佳,马小飞,郑兴卫,郝建宇,乔玲,葛川,王爱爱,张树伟,张晓军,姬虎太,郑军. 不同水分条件下HMW-GS对小麦品质的影响[J]. 作物学报, 2019, 45(11): 1682-1690.
[5] 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定[J]. 作物学报, 2018, 44(04): 614-619.
[6] 胡德益,蔡露,陈光登,张锡洲,刘春吉. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析[J]. 作物学报, 2017, 43(12): 1746-1759.
[7] 郝岭,邢嘉鹏,段留生,张明才*,李召虎. 丙环唑对玉米幼苗生长的调控及其相关机制[J]. 作物学报, 2017, 43(11): 1603-1610.
[8] 吴律,代力强,董青松,施婷婷,王丕武*. 玉米行粒数的全基因组关联分析[J]. 作物学报, 2017, 43(10): 1559-1564.
[9] 王金萍,孙果忠,王海波. 活性炭促进玉米幼胚离体培养幼苗生长与发育的转录组分析[J]. 作物学报, 2017, 43(10): 1489-1498.
[10] 何俊欧,凌霄霞,张建设,张萌,马迪,孙梦,刘永忠,展茗,赵明. 近35年湖北省低丘平原区玉米需水量及旱涝时空变化[J]. 作物学报, 2017, 43(10): 1536-1547.
[11] 郝岭,张钰石,段留生,张明才*,李召虎. 玉米ZmBRI1基因的克隆、表达及功能分析[J]. 作物学报, 2017, 43(09): 1261-1271.
[12] 王博新,王亚辉,陈朋飞,刘徐冬雨,冯志前,郝引川,张仁和,张兴华,薛吉全*. 源于陕A群、陕B群玉米自交系在不同密度条件下配合力分析[J]. 作物学报, 2017, 43(09): 1328-1336.
[13] 马秋颖,王智,徐道清,王秀东,顿宝庆,路明. 玉米秸秆收贮高效资源化利用模式分析[J]. 作物学报, 2017, 43(08): 1190-1195.
[14] 王志刚,梁红伟,高聚林,于晓芳,孙继颖,苏治军,胡树平,余少波,李雅剑,魏淑丽,杨哲. 玉米弱势粒库活性与籽粒内源激素及多胺含量的关系[J]. 作物学报, 2017, 43(08): 1196-1204.
[15] 李国君,马艺文,徐丹阳,吴永波,宋洁,王楠,郝转芳,赵娟. 玉米SNAC基因的遗传变异及耐旱性调控[J]. 作物学报, 2017, 43(08): 1128-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!