Maize, Density, General combining ability,Specific combining ability, AMMI model,"/> 源于陕A群、陕B群玉米自交系在不同密度条件下配合力分析
欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1328-1336.doi: 10.3724/SP.J.1006.2017.01328

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

源于陕A群、陕B群玉米自交系在不同密度条件下配合力分析

王博新,王亚辉,陈朋飞,刘徐冬雨,冯志前,郝引川,张仁和,张兴华,薛吉全*   

  1. 西北农林科技大学农学院/农业部西北旱区玉米生物学与遗传育种重点实验室,陕西杨凌712100
  • 收稿日期:2016-11-14 修回日期:2017-04-20 出版日期:2017-09-12 网络出版日期:2017-05-08
  • 通讯作者: 薛吉全, E-mail: xjq2934@163.com
  • 基金资助:

    本研究由国家现代农业产业技术体系专项(CARS-02-64)和陕西省重点研发计划项目玉米优异种质创制与利用(2016TZC-N-2-1)资助。

Combining Ability of Maize Inbred Lines from ShaanA Group and Shaan B Group under Different Density Conditions

WANG Bo-Xin,WANG Ya-Hui,CHEN Peng-Fei,LIU Xu-Dong-Yu,FENG Zhi-Qian,HAO Yin-Chuan,ZHANG Ren-He,ZHANG Xing-Hua,XUE Ji-Quan*   

  1. College of Agronomy, Northwest A&F University / Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Yangling712100, China
  • Received:2016-11-14 Revised:2017-04-20 Published:2017-09-12 Published online:2017-05-08
  • Contact: Xue Jiquan, E-mail: xjq2934@163.com
  • Supported by:

    The study was supported by the China Agriculture Research System(CARS-02-64) and Shaanxi Key Research and Development Project about Innovation and Utilization of Maize Elite Germplasm (2016TZC-N-2-1).

摘要:

采用NC-II遗传设计,以郑58、昌7-2为测验种,与17个高密度条件下筛选的玉米自交系组配成34个杂交组合,2014—2015年分别于陕西杨凌、长武、榆林进行3种密度(45000、67500和90000株hm-2)配合力分析试验。采用PROC VARCOMP分析不同密度条件下产量及耐密相关性状的遗传效应,采用频率直方分布图研究不同密度条件下产量及耐密相关性状一般配合力(GCA)平均数的变化规律,利用AMMI评价玉米自交系与杂交组合的稳定性。结果表明,产量、倒伏率、茎秆强度主要受加性遗传效应控制,而空秆率主要受非加性遗传效应控制。加性遗传效应对产量及耐密相关性状的贡献率随种植密度的增加呈上升趋势。玉米自交系产量、空秆率、倒伏率、茎秆强度的一般配合力频率均属于正态分布,随着种植密度的增加,产量GCA的平均值提高了0.28,空秆率GCA平均值降低了0.21,倒伏率GCA平均值降低了0.03,茎秆强度GCA平均值增加了0.02。玉米杂交组合产量与玉米自交系产量GCA密切相关(r=0.877**,r=0.811**,r=0.672**)。随着种植密度的增加,表现稳定的玉米自交系及杂交组合的数量呈上升趋势。因此,强化逆境选择压力,实施高密度选择策略,是增强玉米自交系耐密性和抗倒性,提升一般配合力,实现产量增益的有效措施。

关键词: 玉米, 密度, 一般配合力, 特殊配合力, AMMI模型

Abstract:

The objective of this study was to investigate the effectiveness of high-density breeding strategy through analyzing genetic components and general combining ability (GCA) effectsunder different planting densities. Seventeen maize inbred lines selected under high density were test-crossed with two testers (Zheng 58, Chang 7-2) in the North Carolina Design II. Thirty-four crosses were evaluated under different density conditions (45 000, 67 500, and 90 000 plants ha-1) in 2014 and 2015 at Yangling, Changwu and Yulin in Shaanxi province. The genetic variance components for grain yield and other traits were estimated using PROC VARCOMP method. Frequency distribution was used to analyze the response of GCA for grain yield and other traits under different densities. The stability of maize inbred lines and crosses was evaluated based on AMMI model. The grain yield, stalk lodging rate and rind penetration strength were mostly controlled by additive gene action, while the inheritance of sterile plant rate controlled by non-additive gene action. Also, the contribution of additive gene action to total variance increasedwith increasing planting density. The average of general combining ability for grain yield, sterile plant rate, stalk lodging rate and rind penetration strength increased by 0.28, -0.21, -0.03, and 0.02, respectively, from low density to high density. The correlations between GCA of the inbred lines and their crosses were significant (r=0.877**, r=0.811**, r=0.672**) under different density. As the density increased, the number of stable maize inbred lines and crosses increased. These results indicate that increasing plant density to improve GCA for grain yield and other traits of inbred lines is an effective strategy to enhance tolerance to high plant density and yield stability.

Key words: Maize')">

[1]Duvick D N. The contribution of breeding to yield advances in maize. AdvAgron, 2005, 86: 83–145
[2]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–200
[3]Luque S F, Cirilo A G, Otegui M E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Res, 2006, 95: 383–397
[4]Ci X, Li M, Liang Z, Xie Z, Zhang D, Li X, Lu Z, Ru G, Bai L, Xie C, Hao Z, Zhang S. Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci,2011, 51: 13–20
[5]Bruulsema T W M, TollenaarM, Heckman J R. Boosting crop yields in the next century. Better Crops with Plant Food, 2000, 84: 9–13
[6]Duvick D N. Genetic contributions to yield gains of U.S. hybridmaize, 1930?1980. In: Genetic Contributions to Yield Gains ofFive Major Crop Plants. Proceedings of a Symposium. Madison,Wis. (USA), 1984. pp 15–47
[7]Duvick D N. What is yield? In: Developing Drought and LowN-tolerant Maize. Proceedings of Symposium. El Batan, Mexico: CIMMYT, 1996. pp 332−335
[8]Troyer A F. Adaptation and heterosis in corn and mule hybrids. Crop Sci, 2006, 46:528–543
[9]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597–1604
[10]张世煌. 郑单958带给我们的创新思路和发展机遇. 玉米科学, 2006, 14(6): 4–6
Zhang S H. Revelation and challenges on maize breeding strategy revealed by hybrid Zhengdan958. J Maize Sci, 2006, 14(6):4–6 (in Chinese with English abstract)
[11]薛吉全, 张仁和, 马国胜, 路海东, 张兴华, 李凤艳, 郝引川, 邰书静. 种植密度、氮肥和水分胁迫对玉米产量形成的影响.作物学报,2010, 36: 1022−1029
Xue J Q, Zhang R H, Ma G S, Lu H D, Zhang X H, Li F Y, Hao Y C, Tai S J. Effects of plant density, nitrogen application, and water stress on yield formation of maize.ActaAgron Sin, 2010, 36: 1022−1029(in Chinese with English abstract)
[12]ReifJ C, Hallauer A R, Melchinger A E. Heterosis and heterotic patterns in maize. Maydica, 2005, 50: 215–223
[13]杨晓钦,张仁和, 薛吉全, 邰书静, 张兴华, 郭艳萍, 郭德林. 非生物胁迫对玉米杂交种及其亲本自交系产量性状的影响. 作物学报, 2013, 39: 1325–1329
Yang X Q, Zhang R H, Xue J Q, Tai S J, Zhang X H, Guo Y P, Guo D L. Effects of abiotic stress on yield traits of maize hybrids and their parental inbred lines. ActaAgron Sin, 2013, 39: 1325–1329 (in Chinese with English abstract)
[14]Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci,1991, 10: 235–322
[15]Anita D H, ZygmuntK, Kielczewska H. Genetic analysis of line×testerprogenies compared in orthogonally supplemented efficiency balanced incompleteblock designs. Biometrical J, 1989, 31: 753–757
[16]BakerRJ. Issues in diallel analysis. Crop Sci, 1978, 18: 533–536
[17]Cox J, Frey K J. Combining ability and the selection of parents for specific oat mating. Crop Sci,1984, 24: 963–967
[18]Gauchjr H G, Zobel RW. Predictive and postdictive success of statistical analyses of yield trials. TheorAppl Genet,1988, 76: 1–10
[19]Goodnight C J. Epitasis and the effect of founder events on the additive genetic variance. Evolution, 1988, 42: 441–454
[20]Betrán F J, Beck D, Bänziger M, Edmeades G O. Genetic analysis of inbred and hybrid grain yield under stress and non-stress environments in tropical maize. Crop Sci, 2003, 43: 807–817
[21]Badu-Apraku B, Oyekunle M, Akinwale R O. Combining ability and heterotic groups of early-maturing tropical white maize inbred lines under stress and non-stress environments. AgronJ,2011, 103: 544–557
[22]梁文科, 张世煌, 戚廷香, 庹洪章, 刘永忠, 郑用琏, 徐尚忠. 热带温带玉米群体产量性状遗传力及遗传方差分量的剖析. 中国农业科学, 2006, 39: 2178–2185
Liang W K, Zhang S H, Qi T X, Tuo H Z, Liu Y Z, Zheng Y L, Xu S Z. Dissection of heritability and genetic variance components for yield traits in tropical and temperate maize populations. SciAgric Sin, 2006, 39: 2178–2185(in Chinese with English abstract)
[23]王文斌, 徐淑兔, 高杰, 张兴华, 郭东伟, 李向阳, 薛吉全. 基于SNP标记的玉米自交系遗传多样性分析.玉米科学, 2015, 23(2): 41–45
Wang W B, Xu S T, Gao J, Zhang X H,Guo D W, Li X Y, Xue J Q. Analysis of genetic diversity of maize inbred lines based on SNP markers.J Maize Sci, 2015, 23(2): 41–45(in Chinese with English abstract)
[24]杨泽勇, 张兴华, 薛吉全. 3种密度玉米自交系选择的配合力分析.湖北农业科学, 2009, 48: 576–579
Yang Z Y, Zhang X H, Xue J Q. Study on combining ability of maize inbred lines selected in three densities. Hubei AgricSci, 2009, 48: 576–579(in Chinese with English abstract)
[25]高瑞景, 李泾孝, 张仁和, 毛建昌. 两种密度系谱法选择玉米自交系的一般配合力分析. 西北农林科技大学学报(自然科学版), 2008, 36(6): 56–60
GaoR J, Li J X, Zhang R H, Mao J C. Selection of maize inbred lines with pedigree under two densities–based on the general combination ability analysis.J Southwest A&F Univ(Nat SciEdn), 2008, 36(6): 56–60 (in Chinese with English abstract)
[26]梁雨娟, 刘振库, 李继竹, 尹日成, 王远路, 姜龙, 杨伟光. 不同密度条件下玉米杂种优势及配合力研究. 玉米科学, 2012, 20(6): 25–29
Liang Y J, Liu Z K, Li J Z, Yi R C, Wang Y L, Jiang L, Yang W G. Heterosis and combining ability of maize under different density. J Maize Sci,2012, 20(6): 25–29 (in Chinese with English abstract)
[27]张铭堂, 张国良,才卓. 玉米自交系选育的理论基础与实践经验. 玉米科学, 2010, 18(2): 1–4
Zhang M T, Zhang G L, Cai Z. Theoretical foundation and practice experience of breeding for maize inbred lines. J Maize Sci, 2010, 18(2):1–4 (in Chinese with English abstract)
[28]FrancisTR, Kannenberg LW. Yield stability studies in short-season maize: I. A descriptive method for grouping genotypes. Can J Plant Sci,1978, 58: 1029–1034
[29]Matteo J A, Ferreyra J M, Cerrudo A A, Echarte L, Andrade F H.Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding. Field Crops Res, 2016, 197: 107–116
[30]Dow E W, Daynard T B, Muldoon J F, Major D J, Thurtell G W. Resistance to drought and density stress in Canadian and Europeanmaize (Zea mays L.) hybrids. CanJPlant Sci,1984, 64: 575–585

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!