作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1617-1624.doi: 10.3724/SP.J.1006.2012.01617
周淼平1,杨学明1,姚金保1,任丽娟1,张增艳2,马鸿翔1
ZHOU Miao-Ping1,YANG Xue-Ming1,YAO Jin-Bao1,REN Li-Juan1,ZHANG Zeng-Yan2,MA Hong-Xiang1
摘要: 天麻抗真菌蛋白Gastrodianin在体外可以抑制多种病原真菌的生长。为检验转Gastrodianin基因小麦对真菌病害的抗性,采用基因枪法将由ubiquitin启动子驱动的Gastrodianin基因导入小麦品种扬麦158和Alondra, 获得14株纯合的转基因株系。外源基因的PCR检测、染色体荧光原位杂交、半定量RT-PCR分析结果表明,外源Gastrodianin基因在转基因小麦T5代植株中已经纯合并有不同水平的表达;赤霉病和纹枯病抗性鉴定结果显示,Gastrodianin基因的表达能抑制病原菌在转基因植株中生长,从而减轻病原菌引起的病症发展,且两种病害的减轻程度与Gastrodianin基因的表达水平正相关。
[1]Hu Z(胡忠), Yang Z-M(杨增明), Wang J(王均). The isolation and partly characteristic of an anti-fungal protein extracted from Gastrodia. Acta Botanica Yunnanica (云南植物研究), 1988, 10 (4): 373–380 (in Chinese with English abstract)[2]Xu Q, Liu Y, Wang X, Gu H, Chen Z. Purification and characterization of a novel anti-fungal protein from Gastrodia elata. Plant Physiol Biochem, 1998, 36: 899–905[3]Hu Z(胡忠), Huang Q-Z(黄清藻), Liu X-Z(刘小烛), Yang J-B(杨俊波). Primary structure and cDNA cloning of the antifungal protein GAFP-I from Gastrodia elata. Acta Bot Yunnanica (云南植物研究), 1999, 2(2): 131–138 (in Chinese with English abstract)[4]Wang Y-Q(王义琴), Li W-B(李文彬), Lam H, Zhang X-H(张秀海), Chen Q(陈潜), Guo S-X(郭顺星), Sun Y-R(孙勇如). N-terminal sequencing and cDNA cloning of Gastrodia antifungal protein (GAFP). High Technol Lett (高技术通讯), 2000, 10: 10–14 (in Chinese with English abstract)[5]Wang X, Bauw G,Van Damme E J M, Peumans W J, Chen Z L,Van Montagu M, Angenon G, Dillen W. Gastrodianin-like mannosebinding proteins: a novel class of plant proteins with antifungal properties. Plant J, 2001, 25: 651–661[6]Sa Q, Wang Y, Li W, Zhang L, Sun Y. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid. Plant Cell Rep, 2003, 22:79–84[7]Wang H X, Yang T, Zeng Y, Hu Z. Expression analysis of the gastrodianin gene ga4B in an achlorophyllous plant Gastrodia elata Bl. Plant Cell Rep, 2007, 26: 253–259[8]Wang Y Q, Chen D J, Wang D M, Huang Q S, Yao Z P, Liu F J, Wei X W, Li R J, Zhang Z N, Sun Y R. Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breeding, 2004, 123: 454–459 [9]Cox K D, Layne D R, Scorza R, Schnabel G. Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco. Planta, 2006, 224:1373–1383[10]Christensen A H, Quail P H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 1996, 5: 213–218[11]Zhou M-P(周淼平), Yu G-H(余桂红), Ren L-J(任丽娟), Zhu W-F(朱伟芳), Ma H-X(马鸿翔). Screening of transgenic wheat plants resistant to herbicide. J Triticeae Crops (麦类作物学报), 2008, 28(6): 935–940 (in Chinese with English abstract)[12]Bedbrook J R, Jones J, O’Dell M, Thompson R D, Flavell R B. A molecular description of telomeric heterochromatin in Secale species. Cell, 1980, 19: 545–560[13]Rayburn A L, Gill B S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep, 1986, 4: 102–109[14]Yang X-M(杨学明), Yao J-B(姚金保), Ma H-X(马鸿翔), Chen P-D(陈佩度). FISH analysis of 45S rDNA and 5S rDNA gene loci in a wheat-Haynaldia villosa 6V substitution line. J Plant Genet Resour (植物遗传资源学报), 2011, 12(3): 464–467 (in Chinese with English abstract)[15]Chen W P, Chen P D, Liu D J, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill B S. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet, 1999, 99: 755–760[16]Anand A, Zhou T, Trick H N, Gill B S, Bockus W W, Muthukrishnan S. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot, 2003, 54: 1101–1111[17]Ye X-G(叶兴国), Cheng H-M(程红梅), Xu H-J(徐惠君), Du L-P(杜丽璞), Lu W-Z(陆维忠), Huang Y-H(黄益洪). Development of transgenic wheat plants with chitinase and β-1,3-glucosanase genes and their resistance to Fusarium head blight. Acta Agron Sin (作物学报), 2005, 31(5): 583–586 (in Chinese with English abstract)[18]Ye X-G(叶兴国), Sato S, Xu H-J(徐惠君), Du L-P(杜丽璞), Huang Y-H(黄益洪), Lu W-Z(陆维忠), Clemente T. Transformation and identification of BCL and RIP genes related to cell apodosis into wheat mediated by Agrobacterium. Acta Agron Sin (作物学报), 2005, 31(11): 1389–1393 (in Chinese with English abstract)[19]Mackintosh C A, Lewis J, Radmer L E, Shin S, Heinen S J, Smith L A, Wyckoff M N, Dill-Macky R, Evans C K, Kravchenko S, Baldridge G D, Zeyen R J, Muehlbauer G J. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep, 2007, 26: 479–488[20]Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot, 2008, 59: 4195–4204[21]Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics, 2011, 11: 63–70[22]Liu X(刘欣), Cai S-B(蔡士宾), Zhang B-Q(张伯桥), Zhou M-P(周淼平), Lu Y(路妍), Wu J-Z(吴继中), Du L-P(杜丽璞), Li S-S(李斯深), Zang S-J(臧淑江), Zhang Z-Y(张增艳). Molecular detection and identification of TaPIEP1 transgenic wheat with enhanced-resistance to sharp eyespot and Fusarium head blight. Acta Agron Sin (作物学报), 2011, 37(7): 1144−1150 (in Chinese with English abstract)[23]Zhou M-P(周淼平), Zhou X-Q(周小青), Zhang Z-Y(张增艳), Dong N(董娜), Ma H-X(马鸿翔), Yao J-B(姚金保). Over-expression of TaPIEP1 enhanced resistance to wheat sharp eyespot in transgenic wheat. J Nucl Agric Sci (核农学报), 2011, 25(3): 421–426 (in Chinese with English abstract)[24]Lu Y(路妍), Zhang Z-Y(张增艳), Ren L-J(任丽娟), Liu B-Y(刘宝业), Liao Y(廖勇), Xu H-J(徐惠君), Du L-P(杜丽璞), Ma H-X (马鸿翔), Ren Z-L(任正隆), Jing J-X(井金学), Xin Z-Y(辛志勇). Molecular analyses on Rs-AFP2 transgenic wheat plants and their resistance to Rhizoctonia cerealis. Acta Agron Sin (作物学报), 2009, 35(4): 640−646 (in Chinese with English abstract)[25]Wang Y Q, Liu J, Li W B, Sun Y R. In vitro activity and cDNA cloning of an antifungal protein with strong Gibberella zeae resistance from Gastrodia elata Blume. In: Raupp J W, Ma Z, Chen P, Liu D, eds. Proceedings of the international symposium on wheat improvement for scab resistance. Manhattan KS USA: KSU Printing Services, 2000. pp 47–52[26]Liang H(梁辉), Zhu Y-F(朱银峰), Zhu Z(朱祯), Sun D-F(孙东发), Jia X(贾旭). Obtainment of transgenic wheat with the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) gene and analysis of resistance to aphid. Acta Genet Sin (遗传学报), 2004, 31(2): 189–194 (in Chinese with English abstract)[27]Xu Q-F(徐琼芳), Tian F(田芳), Chen X(陈孝), Li L-C(李连城), Lin Z-S(林志姗), Mo Y(莫英), Xu H-J(徐惠君), Liu Y(刘燕), Xu W-G(许为钢), Du L-P(杜丽璞), Xin Z-Y(辛志勇). Molecular test and Aphids resistance identification of new transgenic wheat lines with GNA gene. J Triticeae Crops (麦类作物学报), 2005, 25(3): 7–10 (in Chinese with English abstract)[28]Liu W, Yang N, Ding J, Huang R H, Hu Z, Wang D C. Structural mechanism governing the quaternary organization of monocot mannose-binding lectin revealed by the novel monomeric structure of an orchid lectin. J Biol Chem, 2005, 280: 14865–14876 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[12] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[13] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248. |
|