欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1617-1624.doi: 10.3724/SP.J.1006.2012.01617

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Gastrodianin基因提高小麦赤霉病和纹枯病的抗性

周淼平1,杨学明1,姚金保1,任丽娟1,张增艳2,马鸿翔1   

  1. 1江苏省农业科学院省农业生物学重点实验室,江苏南京210014;2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物遗传育种重点开放实验室,北京100081
  • 收稿日期:2012-01-19 修回日期:2012-04-20 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08002-001), 国家现代农业产业体系建设项目(CARS-03)和江苏省农业科技自主创新资金(CX11-1025)资助。

Enhancement of Resistance to Fusarium Head Blight and Sharp Eyespot in Gastrodianin Transgenic Wheat

ZHOU Miao-Ping1,YANG Xue-Ming1,YAO Jin-Bao1,REN Li-Juan1,ZHANG Zeng-Yan2,MA Hong-Xiang1   

  1. 1 Provincial Key Laboratory for Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 2 National Key Facility of Crop Gene Resources and Gene Improvement / Key Laboratory of Crop Genetic and Breeding, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-01-19 Revised:2012-04-20 Published:2012-09-12 Published online:2012-07-03

摘要: 天麻抗真菌蛋白Gastrodianin在体外可以抑制多种病原真菌的生长。为检验转Gastrodianin基因小麦对真菌病害的抗性,采用基因枪法将由ubiquitin启动子驱动的Gastrodianin基因导入小麦品种扬麦158和Alondra, 获得14株纯合的转基因株系。外源基因的PCR检测、染色体荧光原位杂交、半定量RT-PCR分析结果表明,外源Gastrodianin基因在转基因小麦T5代植株中已经纯合并有不同水平的表达;赤霉病和纹枯病抗性鉴定结果显示,Gastrodianin基因的表达能抑制病原菌在转基因植株中生长,从而减轻病原菌引起的病症发展,且两种病害的减轻程度与Gastrodianin基因的表达水平正相关。

关键词: 小麦, 转基因, Gastrodianin, 赤霉病, 纹枯病

Abstract: Gastrodianin, also called Gastrodia antifungal protein (GAFP), can inhibit the growth of many fungal pathogens in vitro. The Gastrodianin gene driven by maize ubiquitin promoter in the transformation vector pAC-GAFP was introduced into wheat cultivars Yangmai 158 and Alondra via particle bombardment to investigate the resistance to fungal pathogens in transgenic wheat. A total of 14 transgenic lines were obtained and verified through PCR, FISH, and semiquantitative RT-PCR analyses. The results showed that the alien Gastrodianin gene was integrated into wheat genome in the transgenic lines and heritable to the offspring. The alien Gastrodianin gene was expressed at different levels in the transgenic lines of the homozygous T5 generation. The assessment of resistance to Fusarium graminearum and Rhizoctonia cerealis indicated that Gastrodianin suppressed the growth of pathogens in transgenic plants and reduced the severity of both diseases. The enhanced resistance degree was associated with the expression level of Gastrodianin gene in transgenic plants.

Key words: Wheat, Transformation, Gastrodianin, Fusarium head blight, Sharp eyespot

[1]Hu Z(胡忠), Yang Z-M(杨增明), Wang J(王均). The isolation and partly characteristic of an anti-fungal protein extracted from Gastrodia. Acta Botanica Yunnanica (云南植物研究), 1988, 10 (4): 373–380 (in Chinese with English abstract)

[2]Xu Q, Liu Y, Wang X, Gu H, Chen Z. Purification and characterization of a novel anti-fungal protein from Gastrodia elata. Plant Physiol Biochem, 1998, 36: 899–905

[3]Hu Z(胡忠), Huang Q-Z(黄清藻), Liu X-Z(刘小烛), Yang J-B(杨俊波). Primary structure and cDNA cloning of the antifungal protein GAFP-I from Gastrodia elata. Acta Bot Yunnanica (云南植物研究), 1999, 2(2): 131–138 (in Chinese with English abstract)

[4]Wang Y-Q(王义琴), Li W-B(李文彬), Lam H, Zhang X-H(张秀海), Chen Q(陈潜), Guo S-X(郭顺星), Sun Y-R(孙勇如). N-terminal sequencing and cDNA cloning of Gastrodia antifungal protein (GAFP). High Technol Lett (高技术通讯), 2000, 10: 10–14 (in Chinese with English abstract)

[5]Wang X, Bauw G,Van Damme E J M, Peumans W J, Chen Z L,Van Montagu M, Angenon G, Dillen W. Gastrodianin-like mannosebinding proteins: a novel class of plant proteins with antifungal properties. Plant J, 2001, 25: 651–661

[6]Sa Q, Wang Y, Li W, Zhang L, Sun Y. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid. Plant Cell Rep, 2003, 22:79–84

[7]Wang H X, Yang T, Zeng Y, Hu Z. Expression analysis of the gastrodianin gene ga4B in an achlorophyllous plant Gastrodia elata Bl. Plant Cell Rep, 2007, 26: 253–259

[8]Wang Y Q, Chen D J, Wang D M, Huang Q S, Yao Z P, Liu F J, Wei X W, Li R J, Zhang Z N, Sun Y R. Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breeding, 2004, 123: 454–459

[9]Cox K D, Layne D R, Scorza R, Schnabel G. Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco. Planta, 2006, 224:1373–1383

[10]Christensen A H, Quail P H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 1996, 5: 213–218

[11]Zhou M-P(周淼平), Yu G-H(余桂红), Ren L-J(任丽娟), Zhu W-F(朱伟芳), Ma H-X(马鸿翔). Screening of transgenic wheat plants resistant to herbicide. J Triticeae Crops (麦类作物学报), 2008, 28(6): 935–940 (in Chinese with English abstract)

[12]Bedbrook J R, Jones J, O’Dell M, Thompson R D, Flavell R B. A molecular description of telomeric heterochromatin in Secale species. Cell, 1980, 19: 545–560

[13]Rayburn A L, Gill B S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep, 1986, 4: 102–109

[14]Yang X-M(杨学明), Yao J-B(姚金保), Ma H-X(马鸿翔), Chen P-D(陈佩度). FISH analysis of 45S rDNA and 5S rDNA gene loci in a wheat-Haynaldia villosa 6V substitution line. J Plant Genet Resour (植物遗传资源学报), 2011, 12(3): 464–467 (in Chinese with English abstract)

[15]Chen W P, Chen P D, Liu D J, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill B S. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet, 1999, 99: 755–760

[16]Anand A, Zhou T, Trick H N, Gill B S, Bockus W W, Muthukrishnan S. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot, 2003, 54: 1101–1111

[17]Ye X-G(叶兴国), Cheng H-M(程红梅), Xu H-J(徐惠君), Du L-P(杜丽璞), Lu W-Z(陆维忠), Huang Y-H(黄益洪). Development of transgenic wheat plants with chitinase and β-1,3-glucosanase genes and their resistance to Fusarium head blight. Acta Agron Sin (作物学报), 2005, 31(5): 583–586 (in Chinese with English abstract)

[18]Ye X-G(叶兴国), Sato S, Xu H-J(徐惠君), Du L-P(杜丽璞), Huang Y-H(黄益洪), Lu W-Z(陆维忠), Clemente T. Transformation and identification of BCL and RIP genes related to cell apodosis into wheat mediated by Agrobacterium. Acta Agron Sin (作物学报), 2005, 31(11): 1389–1393 (in Chinese with English abstract)

[19]Mackintosh C A, Lewis J, Radmer L E, Shin S, Heinen S J, Smith L A, Wyckoff M N, Dill-Macky R, Evans C K, Kravchenko S, Baldridge G D, Zeyen R J, Muehlbauer G J. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep, 2007, 26: 479–488

[20]Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot, 2008, 59: 4195–4204

[21]Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics, 2011, 11: 63–70

[22]Liu X(刘欣), Cai S-B(蔡士宾), Zhang B-Q(张伯桥), Zhou M-P(周淼平), Lu Y(路妍), Wu J-Z(吴继中), Du L-P(杜丽璞), Li S-S(李斯深), Zang S-J(臧淑江), Zhang Z-Y(张增艳). Molecular detection and identification of TaPIEP1 transgenic wheat with enhanced-resistance to sharp eyespot and Fusarium head blight. Acta Agron Sin (作物学报), 2011, 37(7): 1144−1150 (in Chinese with English abstract)

[23]Zhou M-P(周淼平), Zhou X-Q(周小青), Zhang Z-Y(张增艳), Dong N(董娜), Ma H-X(马鸿翔), Yao J-B(姚金保). Over-expression of TaPIEP1 enhanced resistance to wheat sharp eyespot in transgenic wheat. J Nucl Agric Sci (核农学报), 2011, 25(3): 421–426 (in Chinese with English abstract)

[24]Lu Y(路妍), Zhang Z-Y(张增艳), Ren L-J(任丽娟), Liu B-Y(刘宝业), Liao Y(廖勇), Xu H-J(徐惠君), Du L-P(杜丽璞), Ma H-X (马鸿翔), Ren Z-L(任正隆), Jing J-X(井金学), Xin Z-Y(辛志勇). Molecular analyses on Rs-AFP2 transgenic wheat plants and their resistance to Rhizoctonia cerealis. Acta Agron Sin (作物学报), 2009, 35(4): 640−646 (in Chinese with English abstract)

[25]Wang Y Q, Liu J, Li W B, Sun Y R. In vitro activity and cDNA cloning of an antifungal protein with strong Gibberella zeae resistance from Gastrodia elata Blume. In: Raupp J W, Ma Z, Chen P, Liu D, eds. Proceedings of the international symposium on wheat improvement for scab resistance. Manhattan KS USA: KSU Printing Services, 2000. pp 47–52

[26]Liang H(梁辉), Zhu Y-F(朱银峰), Zhu Z(朱祯), Sun D-F(孙东发), Jia X(贾旭). Obtainment of transgenic wheat with the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) gene and analysis of resistance to aphid. Acta Genet Sin (遗传学报), 2004, 31(2): 189–194 (in Chinese with English abstract)

[27]Xu Q-F(徐琼芳), Tian F(田芳), Chen X(陈孝), Li L-C(李连城), Lin Z-S(林志姗), Mo Y(莫英), Xu H-J(徐惠君), Liu Y(刘燕), Xu W-G(许为钢), Du L-P(杜丽璞), Xin Z-Y(辛志勇). Molecular test and Aphids resistance identification of new transgenic wheat lines with GNA gene. J Triticeae Crops (麦类作物学报), 2005, 25(3): 7–10 (in Chinese with English abstract)

[28]Liu W, Yang N, Ding J, Huang R H, Hu Z, Wang D C. Structural mechanism governing the quaternary organization of monocot mannose-binding lectin revealed by the novel monomeric structure of an orchid lectin. J Biol Chem, 2005, 280: 14865–14876
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!