欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1625-1630.doi: 10.3724/SP.J.1006.2012.01625

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

灰飞虱胁迫下水稻防卫相关基因的表达

李万昌1,2,**,余娇娇1,2,**,段灿星1,*,朱振东1,王晓鸣1   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081;2 河南师范大学,河南新乡453007
  • 收稿日期:2012-02-09 修回日期:2012-04-20 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 通讯作者: 段灿星, E-mail: duancx@caas.net.cn, Tel: 010-82109609? ** 同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家自然科学基金项目(30971746)和国家转基因生物新品种培育科技重大专项(2009ZX08009-046B)资助。

Expression of Rice Defence Genes under Small Brown Planthopper Stress

LI Wan-Chang1,2,**,YU Jiao-Jiao1,2,**,DUAN Can-Xing1,*,ZHU Zhen-Dong1,WANG Xiao-Ming1   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Genetic Resources and Improvement, Beijing 10081, China; 2 Henan Normal University, Xinxiang 453007, China
  • Received:2012-02-09 Revised:2012-04-20 Published:2012-09-12 Published online:2012-07-03
  • Contact: 段灿星, E-mail: duancx@caas.net.cn, Tel: 010-82109609? ** 同等贡献(Contributed equally to this work)

摘要: 灰飞虱是我国水稻生产上的一种重要害虫。运用荧光定量PCR方法及特异性引物,对不同时间(12、24、36、48和72 h)灰飞虱胁迫下抗虫和感虫水稻品种中主要防卫途径的相关基因进行转录水平上定量分析。灰飞虱取食后,与水杨酸合成途径相关的基因PAL、NPR1、EDS1PAD4在抗灰飞虱品种Mudgo中的表达水平均高于在感虫水稻Kittake中。接虫12 h后,PAL基因表达量达到未接虫时的6.914倍;在Mudgo中,PAL基因相对表达量上升更快,在24、48和72 h分别是Kittake中的42.848、70.743和69.193倍。NPR1基因在灰飞虱为害12、36和72 h后,在Mudgo中的表达量分别是Kittake中的4.690、6.231和4.112倍。与茉莉酸合成相关的基因LOXAOS2,在灰飞虱为害36 h后,在Kittake中的表达水平显著高于Mudgo中。乙烯信号途径中的受体基因EIN2在Kittake中的表达量也高于Mudgo中。结果表明,灰飞虱取食激活了抗虫水稻Mudgo中依赖水杨酸介导的抗性途径,同时诱导感虫水稻Kittake产生了依赖茉莉酸/乙烯途径的防卫反应,PALNPR1基因的表达在调节Mudgo抗灰飞虱中具有重要作用。

关键词: 水稻, 灰飞虱, 防卫基因, 荧光定量PCR

Abstract: The small brown planthopper (SBPH), Laodelphax striatellus Fallén (Homoptera: Delphacide), is an economically important pest in rice (Oryza sativaL.) production in China.Real-time PCR was used to determine transcriptional level of rice defence genes after SBPH infestation using specific primers. The expression level of SA synthesis-related genes PAL, NPR1, EDS1, and PAD4 was higher in resistant Mudgo than in susceptible Kittake after SBPHfeeding. The expression level of gene PAL in 12 h-infestation rice was 6.914 times of that in untreated rice. The gene PAL accumulation was more rapid and at higher levels in Mudgo and the expression amount in Mudgo was 42.848, 70.743, and 69.193 times of that in Kittake at 24, 48, and 72 h after SBPH infestation, respectively.The gene NPR1 expression in Mudgo was 4.690, 6.231, and 4.112 times of that in Kittake after SBPH infestation for 12, 36, and 72 h. There was significant difference in transcriptional level of the JA synthesis-related genes LOX and AOS2 after 36 h-infestation between Mudgo and Kittake. The expression level was substantially lower in Mudgo than in Kittake at subsequent time points. In addition, the expression level of receptor gene EIN2 in ethylene signaling pathway was higher in Kittake than in Mudgo after SBPHfeeding. The above results indicated that SBPH feeding activatedthe salicylic acid signaling pathway in resistantMudgo and induced the defenses in susceptible Kittake associated with a JA/ethylene-dependent pathway. The genesPAL and NPR1 played a considerable role in the regulation of Mudgo expressing resistanceto SBPH.

Key words: Rice, Small brown Planthopper, Defence genes, Real-time PCR

[1]Normile D. Reinventing rice to feed the world. Science, 2008, 321: 330–333

[2]Duan C X, Wan J M, Zhai H Q, Chen Q, Wang J K, Su N, Lei C L. Quantitative trait loci mapping of resistance to Laodelphax striatellus (Homoptera: Delphacidae) in rice using recombinant inbred lines. J Econ Entomol, 2007, 100: 1450–1455

[3]Duan C X, Su N, Cheng Z J, Lei C L, Wang J L, Zhai H Q, Wan J M. QTL Analysis for the resistance to small brown planthopper (Laodelphax striatellus Fallén) in rice using backcross inbred lines. Plant Breed, 2010, 129: 63–67

[4]Tanaka K, Endo S, Kazano H. Toxicity of insecticides to predators of rice planthoppers: Spiders, the mirid bug and the dryinid wasp. Appl Entomol Zool, 2000, 35: 177–187

[5]Duan C-X(段灿星), Cheng Z-J(程治军), Lei C-L(雷才林), Zhai H-Q(翟虎渠), Wan J-M(万建民). Analysis of QTLs for resistance to small brown planthopper in rice using an F2 population from a cross between Mudgo and Wuyujing 3. Acta Agron Sin (作物学报), 2009, 35(3): 388–394 (in Chinese with English abstract)

[6]Zhu Y-P(朱彦鹏), Chi D-F(迟德富), Li X-C(李晓灿), Wang G-L(王广利). Excitation and signal conduction pathway of plant indirect defense reaction induced by herbivore. Entomol J East Chin (华东昆虫学报), 2008, 17(2): 143–148 (in Chinese with English abstract)

[7]Alborn H T, Turlings T C J, Jones T H, Stenhagen G, Loughrin J H, Tumlinson J H. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 1997, 276: 945–949

[8]Alborn H T, Hansen T V, Jones T H, Benntt D C, Tumlinson J H, Schmelz E A, Teal P E. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci USA, 2007, 104: 12976–12981

[9]Li Q, Xie Q G, Smith-Becker J, Navarre D A, Kaloshian I. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact, 2006, 19: 655–664

[10]Zarate S I, Kempema L A, Walling L L. Silverleaf whitefly induced salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol, 2007, 143: 866–875

[11]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408

[12]Chen J B, Wang S M, Jing R L, Mao X G. Cloning of PvP5CS gene from common bean (Phaseolus vulgaris) and its response to abiotic stresses. J Plant Physiol, 2009, 166: 12–16

[13]Du B, Zhang W L, Liu B F, Hu J, Wei Z, Shi Z Y, He R F, Zhu L L, Chen R Z, Han B, He G C. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA, 2009, 106: 22163–22168

[14]Meng W(孟威), Wen J-Z(文景芝), Wu M-S(吴茂森), He C-Y(何晨阳). Comparative analysis of nitric oxide generation and induction of defense gene expression by Xanthomonas campestris pv. vesicatoria and X. oryzae pv. oryzae of rice suspension-cultured cells. Sci Agric Sin (中国农业科学), 2007, 40(6): 1159–1165 (in Chinese with English abstract)

[15]Walling L L. The myriad plant responses to herbivores. J Plant Growth Regul, 2000, 19: 195–216

[16]Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. OsWRKY13 mediated rice disease resistance by regulating defense related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact, 2007, 20: 492–499

[17]Ryan C A. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol, 1990, 28: 425–449

[18]Peng J-Y(彭金英), Huang Y-P(黄勇平). The signaling pathways of plant defense response and their interaction. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2005, 31(4): 347–353 (in Chinese with English abstract)

[19]Wang Y C, Wang Y C, Tang M, Hao P Y, Yang Z F, Zhu L L, He G C. Penetration into rice tissue by brown planthopper and fine structure of the salivary sheaths. Entomol Exp Appl, 2008, 129: 295–307

[20]Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323–328

[21]Cai D G, Kleine M, Kifle S, Harloff H J, Sandal N N, Kjeld A, Marcker K A, Klein-Lankhorst R M, Salentijn E M J, Lange W, Stiekema W J, Wyss U, Grundler F M W, Jung C. Positional cloning of a gene for nematode resistance in sugar beet. Sciences, 1997, 275: 832–834

[22]Wang Y Y, Wang X L, Yuan H Y, Chen R Z, Zhu L L, He R F, He G C. Responses of two contrasting genotypes of rice to brown planthopper. Mol Plant Microbe Interact, 2008, 21: 122–132

[23]Zhu-Salzman K, Salzman R A, Ahn J E, Koiwa H. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol, 2004, 134: 420–431

[24]Peng J Y, Deng X J, Huang J H, Jia S H, Miao X X, Huang Y P. Role of salicylic acid in tomato (Lycopersicon esculentum) plant defense against cotton bollworm, Helicoverpa armigera Hubner. Z Naturforsch C, 2004, 59: 856–862

[25]Li J, Brader G, Palva E T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 2004, 16: 319–331

[26]Dixon R A, Harrison M J, Lamb C J. Early events in the activation of plant defense responses. Annu Rev Phytopathol, 1994, 32: 479–501
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!