欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1631-1639.doi: 10.3724/SP.J.1006.2012.01631

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝eSRK重组体的构建及其与SCR的相互作用

韦静宜,高启国*,任雪松,王小佳*,李成琼,宋明   

  1. 西南大学园艺园林学院 / 南方山地园艺学教育部重点实验室,重庆 400715
  • 收稿日期:2012-01-19 修回日期:2012-04-20 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 通讯作者: 高启国, E-mail: gaoqg2004031@163.com; 王小佳, E-mail: wxj@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30900986, 31071802),重庆市自然科学基金项目(2009BB1298),教育部博士点基金项目(200806350006),西南大学博士基金项目(SWUB2008042)和中央高校基本科研业务费专项(XDJK2010B010, XDJK2009C126)资助。

Construction of eSRK Chimeras and Interaction between eSRK Chimeras and SCRs from Brassica oleracea L.

WEI Jing-Yi,GAO Qi-Guo*,REN Xue-Song,WANG Xiao-Jia*,LI Cheng-Qiong,SONG Ming   

  1. College of Horticulture and Landscape Architecture, Southwest University / Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
  • Received:2012-01-19 Revised:2012-04-20 Published:2012-09-12 Published online:2012-07-03
  • Contact: 高启国, E-mail: gaoqg2004031@163.com; 王小佳, E-mail: wxj@swu.edu.cn

摘要: SRK与SCR是甘蓝自交不亲和雌雄性决定因子,两者间相互作具有单倍型特异性。为了探讨HVI/II区域在SRK单倍型特异性及其与SCR互作中的作用,采用重组技术构建甘蓝不同单倍型eSRK (SRKE与SRKF)间的重组体eSRKE-1、eSRKE-2和eSRKE-3,用酵母双杂交系统3检测各eSRK重组体与SCR之间的相互作用。结果表明: (1) SCRE能与eSRKE作用,而不能与eSRKF作用,说明eSRKE、eSRKF属于不同单倍型;(2) SCRE与重组体eSRKE-1、eSRKE-2、eSRKE-3均不发生作用,HVI和HVII区域内差异的氨基酸位点共同参与了与SCR的作用;(3) SCRF不能与eSRKE-1、eSRKE-2、eSRKE-3作用,替换HVI/II区域后并不能改变SRK的单倍型。

关键词: 自交不亲性, SRK, SCR, 酵母双杂交

Abstract: Self-incompatibility in Brassica is mediated by allele-specific interactions between stigma-expressed S-locus receptor kinase (SRK) and pollen coat-localized S-locus cysteinerich (SCR) ligands encoded by the S-locus haplotype. To identify amino acid fragments within the SRK extracellular domain (eSRK) that are required for ligand-selective activation, we constructed chimeric eSRK between two S-locus haplotypes in Brassica oleracea, and identified the interaction between eSRK chimeras and SCRs by yeast two-hybrid system. The results showed that SRKE (not chimera) could interact with SCRE, and SRKF could interact with SCRF. All of eSRK chimeras could not interact with SCRs. The hypervariable regions, HVI and HVII, were essential for specificity in the SRK-SCR interaction. However, eSRK chimeras could not interact with SCRF, although they contained hypervariable regions come from eSRKF, which should be related with the overall sequence or 3D conformation of the segments determining SI specificity.

Key words: Self-incompatibility, SRK, SCR, Yeast two-hybrid system

[1]Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA, 1991, 88: 8816–8820

[2]Schopfer C R, Nasrallah M E, Nasrallah J B. The male determinant of self-incompatibility in Brassica. Science, 1999, 286: 1697–1700

[3]Shiba H, Iwano M, Entani T, Ishimoto K, Shimosato H, Che F S, Satta Y, Ito A, Takada Y, Watanabe M, Isogai A, Takayama S. The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level. Plant Cell, 2002, 14: 491–504

[4]Kachroo A, Schopfer C R, Nasrallah M E, Nasrallah J B. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science, 2001, 293: 1824–1826

[5]Takayama S, Shiba H, Iwano M, Shimosato H, Che F S, Kai N, Watanabe M, Suzuki G, Hinata K, Isogai A. The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA, 2000, 97: 1920–1925

[6]Takayama S, Shimosato H, Shiba H, Funato M, Che F S, Watanabe, M, Iwano M, Isogai A. Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature, 2001, 413: 534–538

[7]Mazzurco M, Sulaman W, Elina H, Cock J M, Goring D R. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Mol Biol, 2001, 45: 365–376

[8]Murase K, Shiba H, Iwano M, Che F S, Watanabe M, Isogai A, Takayama S. A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science, 2004, 303: 1516–1519

[9]Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19: 3961–3973

[10]Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998, 95: 382–387

[11]Stone S L, Arnoldo M, Goring D R. A breakdown of Brassica selfincompatibility in ARC1 antisense transgenic plants. Science, 1999, 286: 1729–1731

[12]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898

[13]Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21: 2655–2671

[14]Takaya S J, Isogai A. Molecular mechanism of self-incompatibility. J Exp Bot, 2003, 54: 149–156

[15]Edh K, Widen B, Ceplitis A. The evolution and diversification of S-locus haplotypes in the Brassicaceae family. Genetics, 2009, 181: 977–984

[16]Bechsgaard J S, Castric V, Charlesworth D, Vekemans X, Schierup M H. The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Mol Biol Evol, 2006, 23: 1741–1750

[17]Dwyer K G., Balent M A, Nasrallah J B, Nasrallah M E. DNA sequences of self-incompatibility genes from Brassica campestris and B. oleracea: polymorphism predating speciation. Plant Mol Biol, 1991, 16: 481–486

[18]Kimura R, Sato K, Fujimoto R, Nishio T. Recognition specificity of self-incompatibility maintained after the divergence of Brassica oleracea and Brassica rapa. Plant J, 2002, 29: 215–223

[19]Sato Y, Fujimoto R, Toriyama K, Nishio T. Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and Brassica rapa. Plant Mol Biol, 2003, 52: 617–626

[20]Schierup M H, Mable B K, Awadalla P, Charlesworth D. Identification and characterization of a polymorphic receptor kinase gene linked to the self-incompatibility locus of Arabidopsis lyrata. Genetics, 2001, 158: 387–399

[21]Kusaba M, Nishio T, Satta Y, Hinata K, Ockendon D. Striking sequence similarity in inter- and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris: implications for the evolution and recognition mechanism. Proc Natl Acad Sci USA, 1997, 94: 7673–7678

[22]Naithani S, Chookajorn T, Ripoll D R, Nasrallah J B. Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA, 2007, 104: 12211–12216

[23]Nasrallah J B, Kao T H, Chen C H, Goldberg M L, Nasrallah M E. Amino-acid sequence of glycoproteins encoded by three alleles of the S locus of Brassica oleracea. Nature, 1987, 326: 617–619

[24]Sato K, Nishio T, Kimura R, Kusaba M, Suzuki T, Hatakeyama K, Ockendon D, Satta Y. Coevolution of the S-locus genes, SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics, 2002, 162: 931–940

[25]Awadalla P, Charlesworth D. Recombination and selection at Brassica self-incompatibility loci. Genetics, 1999, 152: 413–425

[26]Sainudiin R, Wong W S, Yogeeswaran K, Nasrallah J B, Yang Z, Nielsen R. Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic selfincompatibility system. J Mol Evol, 2005, 60: 315–326

[27]Miege C, Ruffio-Chable V, Schierup M H, Cabrillac D, Dumas C, Gaude T, Cock J M. Intrahaplotype polymorphism at the Brassica S Locus. Genetics, 2001, 159: 811–822

[28]Nordborg M, Innan H. The genealogy of sequences containing multiple sites subject to strong selection in a subdivided population. Genetics, 2003, 163: 1201–1213

[29]Fowler T J, Mitton M F, Vaillancourt L J, Raper C A. Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. Genetics, 2001, 158: 1491–1503

[30]Gola S, Kothe E. The little difference: in vivo analysis of pheromone discrimination in Schizophyllum commune. Curr Genet, 2003, 42: 276–283

[31]Gola S, Hegner J, Kothe E. Chimeric pheromone receptors in the basidiomycete Schizophyllum commune. Fungal Genet Biol, 2000, 30: 191–196

[32]Dixit R, Nasrallah M E, Nasrallah J B. Post-transcriptional maturation of the S receptor kinase of Brassica correlates with coexpression of the S-locus glycoprotein in the stigmas of two Brassica strains and in transgenic tobacco plants. Plant Physiol, 2000, 124: 297–311
[1] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[2] 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146.
[3] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[4] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[5] 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39.
[6] 白晓璟,廉小平,王玉奎,张贺翠,刘倩莹,左同鸿,张以忠,谢琴琴,胡燈科,任雪松,曾静,罗绍兰,蒲敏,朱利泉. 甘蓝SI相关基因BoCDPK14的克隆与分析[J]. 作物学报, 2019, 45(12): 1773-1783.
[7] 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428.
[8] 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063.
[9] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[10] 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019.
[11] 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726.
[12] 蔺芳芳,杨旭,武小翠,刘晓梅,葛荣朝,赵宝存. 利用分裂泛素酵母双杂交技术钓取小麦TaSC互作蛋白质[J]. 作物学报, 2013, 39(03): 423-430.
[13] 薛丽琰,罗兵,朱利泉,杨永军,张贺翠,常登龙,陈松,彭一波,杨红,曾静,杨昆,高启国,李成琼,任雪松,王小佳. 甘蓝SCR识别与结合SRK胞外域核心编码区DNA序列的酵母双杂交检测[J]. 作物学报, 2012, 38(09): 1583-1591.
[14] 杨昆, 张贺翠, Richard CONVERSE, 朱利泉, 杨永军, 薛丽琰, 罗兵, 常登龙, 高启国, 王小佳. 甘蓝自交不亲和信号转导元件ARC1与EXO70A1的相互作用[J]. 作物学报, 2011, 37(12): 2136-2144.
[15] 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!