欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1856-1863.doi: 0.3724/SP.J.1006.2012.01856

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生γ-生育酚甲基转移酶基因(γ-TMT)的克隆及序列分析

李拴柱,万勇善*,刘风珍*   

  1. 山东农业大学 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室,山东泰安 271018
  • 收稿日期:2012-02-15 修回日期:2012-06-10 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 万勇善, E-mail: yswan@sdau.edu.cn, Tel: 0538-8241540; 刘风珍, E-mail: liufz@sdau.edu.cn, Tel: 0538-8241540
  • 基金资助:

    本研究由山东省花生良种产业化工程项目, 国家现代农业产业技术体系建设专项资金项目(CARS-14)和国家“十二五”科技支撑计划项目(2011BAD35B04)资助。

Cloning and Bioinformatic Analysis of γ-Tocopherol Methyltransferase Gene (γ-TMT) in Peanut

LI Shuan-Zhu,WAN Yong-Shan*,LIU Feng-Zhen*   

  1. State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
  • Received:2012-02-15 Revised:2012-06-10 Published:2012-10-12 Published online:2012-07-27
  • Contact: 万勇善, E-mail: yswan@sdau.edu.cn, Tel: 0538-8241540; 刘风珍, E-mail: liufz@sdau.edu.cn, Tel: 0538-8241540

摘要:

γ-生育酚甲基转移酶(γ-TMT)催化γ-生育酚转变为生物活性最高的α-生育酚,是决定植物中维生素E成分和活性的关键酶。本研究采用电子克隆与PCR相结合的方法获得了花生6个栽培品种(A. hypogaea L.)和花生区组4个二倍体野生种中γ-TMT的全长DNA序列,定名为AhgTMT;从栽培品种丰花2号中获得γ-TMT的cDNA序列,定名为AhrTMT同一栽培品种的AhgTMTAhrTMT的序列完全对应,说明该基因无内含子。AhrTMT编码区长1 059 bp,编码352个氨基酸残基的AhTMT蛋白。AhTMT分子量为39.09 kD,等电点6.72,总平均亲水性–0.12;预测的二级结构中α-螺旋占55.40%, β-折叠占10.51%, 无规则卷曲占34.09%;被定位于叶绿体,含有甲基转移酶保守的SAM结构域。AhTMT与已报道植物γ-TMT氨基酸序列的相似性为61.75%~72.80%。栽培品种的AhgTMTA. ipaensis (BB)A. batizocoi (BB)A. duranensis (AA)A. kuhlmannii (AA) 4个野生种的核苷酸序列同源性分别是100%、99.91%、99.74%、95.63%。

关键词: 花生, &gamma, -生育酚甲基转移酶, 基因克隆, 序列分析

Abstract:

γ-tocopherol methyltransferase(γ-TMT) is one of the critical enzymes that determine the composition and activity of vitamin E in plant. γ-TMT catalyzes the biological reaction from γ-tocopherol to α-tocopherol, is the most bioactive component of vitamin E. In this study, DNA sequence of γ-TMT in peanut (designated as AhgTMT ) was cloned by using in silico cloning combined with PCR from six cultivars and four diploid wild species that belong to Arachis section. cDNA sequence of γ-TMT (designated as AhrTMT) was cloned from Fenghua 2. Nucleotide sequencesof AhgTMT are identical with AhrTMT, which means no intron in this gene. AhrTMT has a 1 059 bp open reading frame encoding a protein (AhTMT) of 352 amino acid residues with a molecular weight of 39.094 kD. The isoelectric points of AhTMT is 6.72 and its grand average of hydropathy is –0.12. Secondary structure prediction of AhTMT indicated that 55.40% of the protein sequence is alpha helixes, 10.51% beta turn and 34.09% random coil. AhTMT has a conserved SAM domain and is localized in chloroplasts. The similarity between AhTMT and γ-TMTs reported in other species is from 61.75% to 72.80%. Alignment analysis of AhgTMT nucleotide sequences indicated that the homology of AhgTMT from cultivars and those from A. ipaensis (BB), A. batizocoi (BB), A. dura nensis (AA) and A. kuhlmannii (AA) was 100%, 99.91%, 99.74%, and 95.63%, respectively.

Key words: Peanut (Arachis hypogaea L.), Vitamin E, &gamma, -tocopherol methyltransferase, Gene cloning, Sequence analysis

[1]Chennupati P, Seguin P, Liu W C. Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J Agric Food Chem, 2011, 59: 13081–13088



[2]Liu X L, Hua X J, Guo J, Qi D M, Wang L J, Liu Z P, Jin Z P, Chen S Y, Liu G S. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett, 2008, 30: 1275–1280



[3]Ouyang S Q, He S J, Liu P, Zhang W K, Zhang J S, Chen S Y. The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci, 2011, 54: 181–188



[4]Yusuf M A, Kumar D, Rajwanshi R, Strasser R J, Tsimilli-Michael M, Govindjee, Sarin N B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta, 2010, 1797: 1428–1438



[5]Hyun T K, Kumar K, Rao K P, Sinha A K, Roitsch T. Role of α-tocopherol in cellular signaling: α-tocopherol inhibits stress-induced mitogen-activated protein kinase activation. Plant Biotechnol Rep, 2011, 5: 19–25



[6]Hofius D, Hajirezaei M R, Geiger M, Tschiersch H, Melzer M, Sonnewald U. RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol, 2004, 135: 1256–1268



[7]Song X-Y(宋晓燕), Yang T-K(杨天奎). The function and application of natural vitamin E. China Oils Fats (中国油脂), 2000, 25(6): 45–47 (in Chinese)



[8]Caretto S, Nisi R, Paradiso A, Laura D G. Tocopherol production in plant cell cultures. Mol Nutr Food Res, 2010, 54: 726–730



[9]Koch M, Lemke R, Heise K P, Mock H P. Characterization of γ-tocopherol methyltransferase from Capsicum annuum L. and Arabidopsis thaliana. Eur J Biochem, 2003, 270: 84–92



[10]Yusuf M A, Sarinl N B. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res, 2007, 16: 109–113



[11]Li Y, Zhou Y, Wang Z, Sun X F, Tang K X. Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci, 2010, 178: 312–320



[12]Bertioli1 D J, Seijo G, Freitas F O, Valls J F M, Leal-Bertiolia S C M, Moretzsohn M C. An overview of peanut and its wild relatives. Plant Genet Resour: Characteriz Utiliz, 2011, 9: 134–149



[13]Tavva V S, Kim Y H, Kagan I A, Dinkins R D, Kim K H, Collins G B. Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep, 2007, 26: 61–70



[14]Ghimire B K, Seong E S, Goh E J, Kang E Y, Ahn J K, Yu C Y, Chung I M. Improving antioxidant activity in transgenic Codonopsis lanceolata plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene. Plant Growth Regul, 2011, 63: 1–6



[15]Frvero A P, Simpson C E, Valls J F M, Vello N A. A Study of the evolution of cultivated peanut through crossability studies among A. ipaensis, A. duranensis and A. Hypogaea. Crop Sci, 2006, 46: 1546–1552



[16]Tang R H, Zhuang W J, Gao G Q, He L Q, Han Z Q, Shan S H, Jiang J, Li Y R. Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agric Sci China, 2008, 7(4): 405–414



[17]Ren X P, Huang J Q, Liao B S, Zhang X J, Jiang H F. Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genet Resour Crop Evol, 2010, 57: 903–913



[18]Koppolu R, Upadhyaya H D, Dwivedi S L, Hoisington D A, Varshney R K. Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol, 2010, 10: 15



[19]Jung S, Tate P L, Horn R, Kochert G., Moore K, Abbott A G. The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered, 2003, 94: 334–340



[20]Kang I H, Gallo M, Tillman B L. Distribution of allergen composition in peanut (Arachis hypogaea L.) and wild progenitor (Arachis) species. Crop Sci, 2007, 47: 997–1003

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!