作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1856-1863.doi: 0.3724/SP.J.1006.2012.01856
李拴柱,万勇善*,刘风珍*
LI Shuan-Zhu,WAN Yong-Shan*,LIU Feng-Zhen*
摘要:
γ-生育酚甲基转移酶(γ-TMT)催化γ-生育酚转变为生物活性最高的α-生育酚,是决定植物中维生素E成分和活性的关键酶。本研究采用电子克隆与PCR相结合的方法获得了花生6个栽培品种(A. hypogaea L.)和花生区组4个二倍体野生种中γ-TMT的全长DNA序列,定名为AhgTMT;从栽培品种丰花2号中获得γ-TMT的cDNA序列,定名为AhrTMT。同一栽培品种的AhgTMT与AhrTMT的序列完全对应,说明该基因无内含子。AhrTMT编码区长1 059 bp,编码352个氨基酸残基的AhTMT蛋白。AhTMT分子量为39.09 kD,等电点6.72,总平均亲水性–0.12;预测的二级结构中α-螺旋占55.40%, β-折叠占10.51%, 无规则卷曲占34.09%;被定位于叶绿体,含有甲基转移酶保守的SAM结构域。AhTMT与已报道植物γ-TMT氨基酸序列的相似性为61.75%~72.80%。栽培品种的AhgTMT与A. ipaensis (BB)、A. batizocoi (BB)、A. duranensis (AA)、A. kuhlmannii (AA) 4个野生种的核苷酸序列同源性分别是100%、99.91%、99.74%、95.63%。
[1]Chennupati P, Seguin P, Liu W C. Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J Agric Food Chem, 2011, 59: 13081–13088[2]Liu X L, Hua X J, Guo J, Qi D M, Wang L J, Liu Z P, Jin Z P, Chen S Y, Liu G S. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett, 2008, 30: 1275–1280[3]Ouyang S Q, He S J, Liu P, Zhang W K, Zhang J S, Chen S Y. The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci, 2011, 54: 181–188[4]Yusuf M A, Kumar D, Rajwanshi R, Strasser R J, Tsimilli-Michael M, Govindjee, Sarin N B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta, 2010, 1797: 1428–1438[5]Hyun T K, Kumar K, Rao K P, Sinha A K, Roitsch T. Role of α-tocopherol in cellular signaling: α-tocopherol inhibits stress-induced mitogen-activated protein kinase activation. Plant Biotechnol Rep, 2011, 5: 19–25[6]Hofius D, Hajirezaei M R, Geiger M, Tschiersch H, Melzer M, Sonnewald U. RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol, 2004, 135: 1256–1268[7]Song X-Y(宋晓燕), Yang T-K(杨天奎). The function and application of natural vitamin E. China Oils Fats (中国油脂), 2000, 25(6): 45–47 (in Chinese)[8]Caretto S, Nisi R, Paradiso A, Laura D G. Tocopherol production in plant cell cultures. Mol Nutr Food Res, 2010, 54: 726–730[9]Koch M, Lemke R, Heise K P, Mock H P. Characterization of γ-tocopherol methyltransferase from Capsicum annuum L. and Arabidopsis thaliana. Eur J Biochem, 2003, 270: 84–92[10]Yusuf M A, Sarinl N B. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res, 2007, 16: 109–113[11]Li Y, Zhou Y, Wang Z, Sun X F, Tang K X. Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci, 2010, 178: 312–320[12]Bertioli1 D J, Seijo G, Freitas F O, Valls J F M, Leal-Bertiolia S C M, Moretzsohn M C. An overview of peanut and its wild relatives. Plant Genet Resour: Characteriz Utiliz, 2011, 9: 134–149[13]Tavva V S, Kim Y H, Kagan I A, Dinkins R D, Kim K H, Collins G B. Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep, 2007, 26: 61–70[14]Ghimire B K, Seong E S, Goh E J, Kang E Y, Ahn J K, Yu C Y, Chung I M. Improving antioxidant activity in transgenic Codonopsis lanceolata plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene. Plant Growth Regul, 2011, 63: 1–6[15]Frvero A P, Simpson C E, Valls J F M, Vello N A. A Study of the evolution of cultivated peanut through crossability studies among A. ipaensis, A. duranensis and A. Hypogaea. Crop Sci, 2006, 46: 1546–1552[16]Tang R H, Zhuang W J, Gao G Q, He L Q, Han Z Q, Shan S H, Jiang J, Li Y R. Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agric Sci China, 2008, 7(4): 405–414[17]Ren X P, Huang J Q, Liao B S, Zhang X J, Jiang H F. Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genet Resour Crop Evol, 2010, 57: 903–913[18]Koppolu R, Upadhyaya H D, Dwivedi S L, Hoisington D A, Varshney R K. Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol, 2010, 10: 15[19]Jung S, Tate P L, Horn R, Kochert G., Moore K, Abbott A G. The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered, 2003, 94: 334–340[20]Kang I H, Gallo M, Tillman B L. Distribution of allergen composition in peanut (Arachis hypogaea L.) and wild progenitor (Arachis) species. Crop Sci, 2007, 47: 997–1003 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[5] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[8] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[9] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[10] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[11] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[12] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[13] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[14] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[15] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
|