作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1920-1929.doi: 10.3724/SP.J.1006.2012.01920
谭秀山1,3,毕建杰2,3,王金花1,3,叶宝兴1,3,*
TAN Xiu-Shan1,3,BI Jian-Jie2,3,WANG Jin-Hua1,3,YE Bao-Xing1,3,*
摘要:
为研究小麦不同穗位籽粒淀粉粒差异及其与粒重相关性, 以露天池栽冬小麦济麦20, 测定不同小穗位成熟颖果胚乳细胞大小、淀粉粒的数目、体积和表面积分布及胚乳发育过程中淀粉体数量变化。结果表明, 小麦胚乳淀粉粒发育具有显著的粒位、穗位效应, 相同小穗位, 强势粒淀粉体起始时间比弱势粒早4~5 d。相同粒位, 中部小穗籽粒淀粉体最先发育, 上部小穗次之, 下部小穗最晚。淀粉体数量在中部小穗籽粒最多, 随着灌浆进程, 下部小穗逐渐赶上并超过上部小穗。成熟籽粒淀粉粒数目分布总趋势为BL型>BS型>A型; BS型淀粉粒表现强势粒>弱势粒, 且随小穗位的升高而呈增加趋势; BL型则相反。淀粉粒的数目分布导致其体积与表面积分布表现出相同的变化趋势。粒重与大、小淀粉体数目相关系数随灌浆进程逐渐增大, 且前者大于后者; 成熟期分别达到0.88**和0.78**。粒重增加与大、小淀粉粒数目增长的相关系数分别高于0.96**和0.93**, 前者在穗位间差异不显著, 后者表现为下部小穗>上部小穗>中部小穗。小麦胚乳淀粉粒形成及粒度分布既具有强弱势籽粒间的粒位效应, 也具有显著的小穗位效应; 弱势籽粒仍有通过增加淀粉粒数量以减小其与强势籽粒间粒重差异的调控空间。
[1]Hanft J M, Jones R J, Stumme A B. Dry matter accumulation and carbohydrate concentration patterns of field-grown and in vitro cultured maize kernels from the tip and middle ear positions. Crop Sci, 1986, 26: 568–572[2]Chen Y, Yuan L P, Wang X H, Zhang D Y, Chen J, Deng Q Y, Zhao B R, Xu D Q. Relationship between grain yield and leaf photosynthetic rate in super hybid rice. Plant Physiol Mol Biol, 2007, 33: 235–243[3]Daniel J M, Gustavo A S. Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crops Res, 1995, 43: 55–66[4]Wang T-D(王天铎). A dynamic analysis of grain weight distribution during maturation of rice. Acta Bot Sin (植物学报), 1962, 10(2): 113–119 (in Chinese with English abstract)[5]Yang J-C(杨建昌). Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron Sin (作物学报), 2010, 36(12): 2011–2019 (in Chinese with English abstract)[6]Li M-L(李孟良), Shi X-Q(时侠清). Study on the difference of grain weight among wheat ear and the effect of spraying pesticide. Seed (种子), 2001, (1): 17–19 (in Chinese with English abstract)[7]Qu H-J(屈会娟), Li J-C(李金才), Shen X-S(沈学善), Li R-Y(李如意), Wei F-Z(魏凤珍), Zhang Y(张一). Effects of plant density on grain number and grain weight at different spikelets and grain positions in winter wheat cultivars. Acta Agron Sin (作物学报), 2009, 35(10): 1875–1883 (in Chinese with English abstract)[8]Rahman S, Kosar-Hashemi B, Samuel M S, Hill A, Abbot D C, Skerritt J H, Preiss J, Appels R, Morell M K. The major proteins of wheat endosperm starch granules. Aust J Plant Physiol, 1995, 22: 793–803[9]Cai R-G(蔡瑞国), Yin Y-P(尹燕枰), Zhao F-M(赵发茂), Zhang M(张敏), Zhang T-B(张体彬), Liang T-B(梁太波), Gu F(顾锋), Dai Z-M(戴忠民), Wang Z-L(王振林). Size distribution of starch granules in strong-gluten wheat endosperm under low light environment. Sci Agric Sin (中国农业科学), 2008, 41(5): 1308–1316 (in Chinese with English abstract)[10]Evers A D. Scanning electron microscopy of wheat starch: Ⅲ. Granule development in the endosperm. Starch-Stärke, 1971, 23: 157–160[11]Tang H, Watanabe K, Mitsunaga T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperm. Carbohyd Polym, 2002, 49: 217–224[12]Evers A D, Lindley J. The particle-size distribution in wheat endosperm starch. J Sci Food Agr, 1977, 28: 98–101[13]Stoddard F L. Survey of starch particle-size distribution in wheat and related species. Cereal Chem, 1999, 76: 145–149[14]Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289–311[15]Raeker M, Gaines C S, Finney P L, Donelson T. Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chem, 1998, 75: 721–728[16]Duan X-C(段续川). Innovations of fix, hydrolyze, separate and stain of plant cells and organelle. Acta Bot Sin, 1959, 8(1): 1–16[17]Dai Z-M(戴忠民). Effects of 6-BA and ABA on endosperm cell propagation and starch accumulation in grains of winter wheat. J Triticeae Crop (麦类作物学报), 2008, 28(3): 484–489 (in Chinese with English abstract)[18]Feng C-N(封超年), Guo W-S(郭文善), Shi J-S(施劲松), Peng Y-X(彭永欣), Zhu X-K(朱新开). Effect of high temperature after anthesis on endosperm cell development and grain weight in wheat. Acta Agron Sin (作物学报), 1997, 18(3): 15–20 (in Chinese with English abstract)[19]Wei C-X(韦存虚), Zhang J(张军), Zhou W-D(周卫东), Chen Y-F(陈义芳), Xu R-G(许如根). Ultrastructural observation on the development of small starch granule (compound starch granule) of wheat endosperm. J Triticeae Crop (麦类作物学报), 2008, 28(5): 804–810 (in Chinese with English abstract)[20]Langeveld S M.J, Wijk R V, Stuurman N, Kijne J W, de Pater S. B-type granule containing protrusions and interconnection between amyloplasts in developing wheat endosperm revealed by transmission electron microscopy and GFP expression. J Exp Bot, 2000, 51: 1357–1361[21]Wei C-X(韦存虚), Zhang J(张军), Zhou W-D(周卫东), Chen Y-F(陈义芳), Xu R-G(许如根). Development of small starch granule in barley endosperm. Acta Agron Sin (作物学报), 2008, 34(10): 1788–1796 (in Chinese with English abstract)[22]Yang X-J(杨学举), Qu P(屈平), Zhang C-Y(张彩英), Liu G-T(刘广田). Effect of type-A starch granule size on starch properties and bread quality in wheat. J Hebei Agric Univ (河北农业大学学报), 2004, 27(5): 1–5 (in Chinese with English abstract)[23]Takada Y, Takeda C, Mizukami H, Hanashiro I. Structures of large, medium and small starch granules of barley grain. Carbohyd Polym, 1999, 38: 109–114[24]Wei C-X(韦存虚), Zhang X-Y(张翔宇), Zhang J(张军), Xu B(徐斌), Zhou W-D(周卫东), Xu R-G(许如根). Isolation and properties of large and small starch grains of different types of wheat cultivars. J Triticeae Crop (麦类作物学报), 2007, 27(2): 255–260 (in Chinese with English abstract)[25]Morris C F, Shackley B J, King G E, Kidwell K K. Genotypic and environmental variation for flour swelling volume in wheat. Cereal Chem, 1997, 74: 16–21[26]Liu Z(刘智), Wang L-L(王玲玲), Zhang E-J(张二金), Zhai G-G(翟干干), Xiong F(熊飞), Zhang C(张琛), Wang Z(王忠). Study on endosperm development between wheat cultivars for different uses. J Triticeae Crop (麦类作物学报), 2011, 31(1): 70–76 (in Chinese with English abstract) |
[1] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303. |
[4] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[5] | 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550. |
[6] | 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580. |
[7] | 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713. |
[8] | 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470. |
[9] | 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540. |
[10] | 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267. |
[11] | 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289. |
[12] | 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853. |
[13] | 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及Wx和OsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888. |
[14] | 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936. |
[15] | 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007. |
|