作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2139-2146.doi: 10.3724/SP.J.1006.2012.02139
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
何美敬,刘立峰*,穆国俊,侯名语,陈焕英,崔顺立
HE Mei-Jing,LIU Li-Feng*,MU Guo-Jun,HOU Ming-Yu,CHEN Huan-Ying,CUI Shun-Li
摘要:
蔗糖合酶(sucrose synthase, SuSy)是蔗糖代谢途径中的关键酶, 在植物生长、发育和渗透调节过程中起着重要的作用。本研究利用同源克隆、RACE和TAIL-PCR相结合的方法从花生叶片中分离了蔗糖合酶基因, 命名为AhSuSy (GenBank登录号JF346233)。该基因cDNA序列全长2 790 bp, 包含一个2 421 bp的开放阅读框(ORF), 5′端非编码区57bp, 3¢端非编码区为312 bp。根据编码区预测AhSuSy编码806个氨基酸, 与大豆、拟南芥、玉米等植物中相关蛋白的氨基酸序列同源性达75%以上; 成功构建了该基因的原核表达载体pET32a-AhSuSy, 在IPTG诱导下得到92 kD左右的蛋白, 与理论值一致。半定量RT-PCR分析表明AhSuSy在花生根、茎、叶中均有表达。利用10%PEG模拟干旱处理花生幼苗, 分析胁迫后AhSuSy的转录水平, 同时测定蔗糖合酶活性和蔗糖含量, 发现三者均表现为处理后4~12 h逐渐升高, 相关性分析显示花生中蔗糖含量与蔗糖合酶活性的相关系数达0.993(P=0.007<0.01), 处理后12~24 h逐渐降低。推测该基因响应干旱调控, 在花生抗旱胁迫中可能起着一定的作用。
[1]Jang J C, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997, 9: 5–19[2]Loreti E, Bellis L D, Alpi A, Perata P. Why and how do plant cells sense sugars? Ann Bot, 2001, 88: 803–812[3]Hanson H D, Hitz W D. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol, 1982, 33: 163–203[4]Kramer P J, Boyer J S. Water Relations of Plants and Soils. San Diego: Academic Press, 1995. pp 377–404[5]Prado F E, Boero C, Gallardo M, González J A. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa wild seeds. Bot Bull Acad Sin, 2000, 41: 27–34[6]Calderon P, Pontis H G. Increase of sucrose synthase activity in wheat plants after a chilling shock. Plant Sci, 1985, 42: 173–176[7]Déjardin A, Sokolov L N, Kleczkowski L A. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem, 1999, 344: 503–509[8]Baud S, Vaultier M N, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot, 2004, 55: 397–409[9]Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol, 2010, 51: 294–301[10]Coleman H D, Yan J, Mansfield S D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA, 2009, 4: 13118–13123 [11]Brill E, Thournout M, White R G, Llewellyn D, Campbell P M, Engelen S, Ruan Y L, Arioli T, Furbank R T. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol, 2011, 157: 40–54[12]Fernández E B, Muñoz F J, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma M T, Romero J P. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA, 2012, 109: 321–326[13]Geiser M, Döring H P, Wöstemeyer J, Behrens U, Tillmann E , Starlinger P. A cDNA clone from Zea mays endosperm sucrose synthetase mRNA. Nucl Acids Res, 1980, 8: 6175–6188[14]Buchner P, Poret M, Rochat C. Cloning and characterization of a cDNA encoding a second sucrose synthase gene in pea (Pisum sativum L.). Plant Physiol, 1998, 117: 719[15]Wienkoop S, Larrainzar E, Glinski M, Gonza′lez E M, Igor C A, Weckwerth W. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. J Exp Bot, 2008, 59: 3307–3315[16]Chopra S, Del-favero J, Dolferus R , Jacobs M. Sucrose synthase of Arabidopsis: genomic cloning and sequence characterization. Plant Mol Biol, 1992, 18: 131–134[17]Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999, 4: 401–407[18]Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot, 2002, 53: 61–71[19]Crespi M D, Zabaleta E J, Pontis H G, Salerno G L. Sucrose synthase expression during cold acclimation in wheat. Plant Physiol, 1991, 96: 887–891[20]Rosa M, Hilal M, Gonzálezb J A, Prado F E. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem, 2009, 47: 300–307 [21]Kleines M, Elster R C, Rodrigo M J, Blervacq A S, Salamini F, Bartels D. Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta, 1999, 209: 13–24[22]Sicilia C B, Amado S H, Melendi G P, Carbonero P. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta, 2011, 234: 391–403[23]Siegien I N, Leszczynska R B, Cômea D, Corbineau F. Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci, 2004, 167: 879–888[24]Lu S W, Li T L, Jiang J. Effects of salinity on sucrose metabolism during tomato fruit development. J Afr Biotechnol, 2010, 9: 842–849 [25]Arrese-Igor C, Gonzalez E M, Gordon A J, Minchin F R, Galvez L, Royuela M, Cabrerizo P M, Aparicio-Tejo P M. Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Plant Physiol, 1999, 27: 189–212[26]Silvente S, Camas A, Lara M. Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule-enhanced sucrose synthase gene. J Exp Bot, 2003, 54: 749–755[27]Salanoubat M, Belliard G. The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration. Gene, 1989, 84: 181–185[28]Zeng Y, Wu Y, Avigne W T, Koch K E. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol, 1998, 116: 1573–1583[29]Loreti E, Poggi A, Novi G, Alpi A, Petrata P. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol, 2005, 137: 1130–1138[30]Zhang J-M(张吉民), Miao H-R(苗华荣), Li Z-C(李正超), Hao S-M(郝素美), Yan Q(闫强), Zhu E-J(祝恩吉). Status and prospects for the processing, utilization and trade of peanut. J Wuhan Polytech Univ (武汉工业学院学报), 2002, (2): 104–106 (in Chinese with English abstract)[31]Nageswara R C. Stability of the relationship between specific leaf area and carbon isotope is crimination across environments in peanut. Crop Sci, 1994, 34: 98–103[32]Lauriano J A, Lidon, F C, Carvalho C A, Campos P S, Matos M C. Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. Photosynthetica, 2000, 38: 7–12[33]Rucker K S, Kvien C K, Holbrook C C, Hook J E. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci, 1995, 22: 14–18[34]Suther D M, Patel M S. Yield and nutrient absorption by groundnut and iron availability in soil as influenced by lime and soil water. J Ind Soc Soil Sci, 1992, 40: 594–596[35]Cole R J, Sanders T H, Dorner J W, Blankenship P D. Environmental conditions required to induce preharvest aflatoxin contamination of groundnuts: summary of six years’ research. In Aflatoxin contamination of groundnuts. Patancheru, 1989: 279–287[36]Jonathan H W, Boote K J. Physiology and modeling-Predicting the “unpredictable legume”. Peanut Sci, 1995, 9: 301–353[37]Jiang H-F(姜慧芳). Peanut Breeding (花生育种学). Beijing: China Agriculture Press, 1997 (in Chinese)[38]Hirose T, Scofield G N, Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci, 2008, 174: 534–543[39]Zhang D Q, Xu B H, Yang X H, Zhang Z Y, Li B L. The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genom, 2011, 7: 443–456[40]Sambrook J, Russell D W. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2001. pp 822–826[41]Brand Y, Hovav R. Identification of suitable internal control genes for quantitative real-time PCR expression analyses in Peanut (Arachis hypogaea L). Peanut Sci, 2009, 37: 1–9[42]Yu X-J(於新建). Detection of sucrose synthase and Sucrose phosphate synthase enzyme activity uses a spectrophotometry strategy. In: Plant Physiology Laboratory Manual (植物生理实验手册). Shanghai: Shanghai scientific & Technical Publishers, 1985. pp 148–149 (in Chinese)[43]Roover J D, Vandenbranden K, Laere A V, Ende W V. Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta, 2000, 210: 808–814[44]Gill P K, Sharma A D, Singh P, Bhullar S S. Effect of various abiotic stresses on the growth soluble sugars and water relations of sorghum seedlings grown in light and darkness. J Plant Physiol, 2001, 27: 72–84[45]Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol, 2005, 8: 93–102[46]He H-Y(贺鸿雁), Sun C-H(孙存华), Du W(杜伟), Li Y(李扬). Effects of PEG 6000 osmotic stress on osmolytes of peanut seedling. J Chin Oil Crop Sci (中国油料作物学报), 2006, 28(1): 76–78 (in Chinese with English abstract)[47]Jha A B, Dubey R S. Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. Plant Physiol, 2004, 161: 101–108[48]Pelah D, Wang W X, Altman A, Shoseyov O, Bartels D. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 1997, 99: 153–159[49]Chenk P W, Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta, 1999, 1449: 1–24[50]Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451–457[51]Bieniawska Z, Barratt D H P, Garlick A P, Thole V, Kruger N J, Martin C, Zrenner R, Smith A M. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J, 2007, 49: 810–828[52]Núñez J G A, Tiessen A. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta, 2010, 232: 701–718 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[4] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[5] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[6] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[7] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[8] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[9] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[10] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[11] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[12] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[13] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[14] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[15] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
|