欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 230-237.doi: 10.3724/SP.J.1006.2013.00230

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

白菜脱水应答转录因子BpDREB1基因的克隆及功能研究

刘晓颖,陈丽媛,张竞秋,李嘉玮,高越,王振英*   

  1. 天津师范大学生命科学学院 / 天津市细胞遗传与分子调控重点实验室,天津300387
  • 收稿日期:2012-05-10 修回日期:2012-10-09 出版日期:2013-02-12 网络出版日期:2012-11-14
  • 通讯作者: 王振英, E-mail: wzycell@yahoo.com.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31071671), 天津市科委支撑项目(11ZCKFNC0070)和天津师范大学市级重点实验室开放研究基金(201003)资助。

Isolation and Functional Analysis of a New DREB Transcription Factor (BpDREB1) from Brassica pekinesis

LIU Xiao-Ying,CHEN Li-Yuan,ZHANG Jing-Qiu,LI Jia-Wei,GAO Yue,WANG Zhen-Ying*   

  1. Tianjin Key Laboratory of Cytogenetical and Molecular Regulation / College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
  • Received:2012-05-10 Revised:2012-10-09 Published:2013-02-12 Published online:2012-11-14
  • Contact: 王振英, E-mail: wzycell@yahoo.com.cn

摘要:

DREB1/CBF类转录因子在植物抵抗外界胁迫上起重要作用,利用这些基因改良作物抗逆性具有重要意义。本研究在白菜中分离到一个DREB类转录因子基因BpDREB1 (EF219470)。该基因序列全长647 bp,推测编码蛋白含213个氨基酸,相对分子量为23 kD,理论等电点为5.11,与白菜中该类转录因子序列同源性为94%。进化树表明,BpDREB1属于DREB亚家族中A1亚族。基因的诱导表达模式分析显示,BpDREB1被低温强烈、迅速诱导表达,并对干旱胁迫也有一定程度的响应,但对高盐处理几乎没有响应。过表达BpDREB1的转基因拟南芥经低温诱导后,其体内可溶性糖及脯氨酸含量大幅度提高。以上结果显示BpDREB1转录因子基因具有家族成员基因结构的特征,在低温、干旱应答途径中起重要作用。

关键词: 白菜, BpDREB1, 低温, 干旱

Abstract:

DREB1/CBF transcription factors play an important role in plant stress tolerance, and one of important significance to gain stress-tolerant crops by transgenic technologies. In this study, a DREB-like gene, named BpDREB1 (accession No. EF219470), was cloned from Chinese cabbage. The BpDREB1 cDNA was 647 bp in length, and encoded protein of 213 amino acids with an predicted molecular weight of 23 kDand a isoelectric point of5.11, and shared 94% similarity with other DREB transcription factor from Chinese cabbage. On the basis of multiple sequence alignment and phylogenetic analysis, BpDREB1 was classified in A-1 group of the DREB family. The expression patterns analysis indicated that BpDREB1 was strongly up-regulated at low temperature, also responded to dehydrationHowever, the expression of BpDREB1 was not affected by high salinity. The expression pattern of BpDREB1 was the same as that of other DREB transcription factors in A-1 group. Overexpression of BpDREB1 greatlyincreased the contents of total soluable sugar andfree prolinein transgenic Arabidopsis plants, demonstrating that transgenic Arabidopsis induced the expression of soluable sugar and prolin related genes to enhance the tolerance to stress. These results suggest that BpDREB1 from Chinese cabbage has the typical characteristic of DREB transcription factors, and functions under the stress conditions including low temperature and drought.

Key words: Chinese cabbage, BpDREB1, Low temperature, Dehydration

[1]Xu Z S, Chen M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53: 570–585



[2]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Physiol, 2006, 57: 781–803



[3]Vij S, Tyagi A K. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J, 2007, 5: 361–380



[4]Century K, Reuber T L, Ratcliffe OJ. Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol, 2008, 147: 20–29



[5]Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful genetic engineering of drought tolerant crops. Mol Plant, 2010, 3: 469–490



[6]Motoaki S, Mari N, Junko I, Tokihiko N, Miki F, Youko O, Asako K, Maiko N, Akiko E, Tetsuya S, Masakazu S, Kenji A, Teruaki T, Kazuko Y S, Piero C, Jun Kawai, Y H , Kazuo S. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarry. Plant J, 2002, 31: 279–292



[7]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an AP2/EREBP DNA-binding domain separate two cellular signal transduction pathways in drought- and low-temperature responsive gene expression in Arabidopsis. Plant Cell, 1998, 10: 1391–1406



[8]Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Rev Plant Sci, 2005, 24: 23–58



[9]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 2005, 16, 123–132



[10]Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol, 2006, 17: 113–122



[11]Thomashow M F, Gilmour S J, Stockinger E J, Jaglo-Ottosen K R, Zarka D G. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 2001, 112: 171–175



[12]Agarwal P K, Agarwal P, Reddy M K, Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 2006, 25: 1263–1274



[13]Kim J. Perception, transduction, and networks in cold signaling. J Plant Biol, 2007, 50: 139–147



[14]Gao J P, Chao D Y, Lin H X. Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol, 2007, 49: 742–750



[15]Nakashima K, Shinwari Z K, Sakuma Y, Seki M, Miura S, Shinozak K, Yamaguchi-Shinozaki K. Organization and expression of two arabidopsis DREB2 genes encoding DRE binding proteins involved in dehydration- and high-salinity responsive gene expression. Plant Mol Biol, 2000, 42: 657–665



[16]Tian X H, Li X P, Zhou H L, Zhang J S, Gong Z Z, Chen S Y. OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. J Integr Plant Biol, 2005, 47: 467–476



[17]Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozakia K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18: 1292–1309



[18]Qin Q L, Liu J G, Zhang Z, Peng R H, Xiong A S, Yao Q H, Chen J M. Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza sativa L. Mol Breed, 2007, 19: 329–340



[19]Gao M J, Allard G, Byass L, Flanagan A M, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol, 2002, 49: 459–471



[20]Qin F, Sakuma Y, Li J, Liu Q, Liu Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1. CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052



[21]Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot, 2009, 60: 121–135



[22]Oh S J, Kwon C W, Choi D W, Song S I, Kim J K. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J, 2007, 5: 646–656



[23]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008, 30: 2191–2198



[24]Huang B, Jin L G, Liu J Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE binding protein from cotton (Gossypium hirsutum). J Plant Physiol, 2008, 165: 214–223



[25]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743



[26]Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical J, 1954, 57: 508–514



[27]Zhang D Z, Wang P H, Zhao H X. Determination of the content of free proline in wheat leaves. Plant Physiol Commun, 1990, 4: 62–65



[28]Sakuma Y, Liu Q, Dubouzeta J G, Abea H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998–1009



[29]Wang P-R(王平荣), Deng X-J(邓晓建), Gao X-L(高晓玲), Chen J(陈静), Wan J(万佳), Jiang H(姜华), Xu Z-J(徐正君). Progress in the study on DREB transcription factor. Hereditas (遗传), 2006, 28: 369–374 (in Chinese with English abstract)



[30]Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平), Wang Z-Z(王自章). Isolation and identification of PNDREB1: a new DREB transcription factor from peanut (Arachis hypogaea L.). Acta Agron Sin (作物学报), 2009, 35: 1973–1980 (in Chinese with English abstract)



[31]Okamuro J K, CASTER B, Villarroel R, Montagu M V, Jofuku K D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076–7081



[32]Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K. Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol, 1997, 33: 857–865



[33]Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平). Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Hereditas (遗传), 2009, 31: 236–244 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[3] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[10] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[11] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[12] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[13] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[14] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[15] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!