作物学报 ›› 2013, Vol. 39 ›› Issue (02): 230-237.doi: 10.3724/SP.J.1006.2013.00230
刘晓颖,陈丽媛,张竞秋,李嘉玮,高越,王振英*
LIU Xiao-Ying,CHEN Li-Yuan,ZHANG Jing-Qiu,LI Jia-Wei,GAO Yue,WANG Zhen-Ying*
摘要:
DREB1/CBF类转录因子在植物抵抗外界胁迫上起重要作用,利用这些基因改良作物抗逆性具有重要意义。本研究在白菜中分离到一个DREB类转录因子基因BpDREB1 (EF219470)。该基因序列全长647 bp,推测编码蛋白含213个氨基酸,相对分子量为23 kD,理论等电点为5.11,与白菜中该类转录因子序列同源性为94%。进化树表明,BpDREB1属于DREB亚家族中A1亚族。基因的诱导表达模式分析显示,BpDREB1被低温强烈、迅速诱导表达,并对干旱胁迫也有一定程度的响应,但对高盐处理几乎没有响应。过表达BpDREB1的转基因拟南芥经低温诱导后,其体内可溶性糖及脯氨酸含量大幅度提高。以上结果显示BpDREB1转录因子基因具有家族成员基因结构的特征,在低温、干旱应答途径中起重要作用。
[1]Xu Z S, Chen M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53: 570–585[2]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Physiol, 2006, 57: 781–803[3]Vij S, Tyagi A K. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J, 2007, 5: 361–380[4]Century K, Reuber T L, Ratcliffe OJ. Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol, 2008, 147: 20–29[5]Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful genetic engineering of drought tolerant crops. Mol Plant, 2010, 3: 469–490[6]Motoaki S, Mari N, Junko I, Tokihiko N, Miki F, Youko O, Asako K, Maiko N, Akiko E, Tetsuya S, Masakazu S, Kenji A, Teruaki T, Kazuko Y S, Piero C, Jun Kawai, Y H , Kazuo S. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarry. Plant J, 2002, 31: 279–292[7]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an AP2/EREBP DNA-binding domain separate two cellular signal transduction pathways in drought- and low-temperature responsive gene expression in Arabidopsis. Plant Cell, 1998, 10: 1391–1406[8]Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Rev Plant Sci, 2005, 24: 23–58[9]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 2005, 16, 123–132[10]Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol, 2006, 17: 113–122[11]Thomashow M F, Gilmour S J, Stockinger E J, Jaglo-Ottosen K R, Zarka D G. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 2001, 112: 171–175[12]Agarwal P K, Agarwal P, Reddy M K, Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 2006, 25: 1263–1274[13]Kim J. Perception, transduction, and networks in cold signaling. J Plant Biol, 2007, 50: 139–147[14]Gao J P, Chao D Y, Lin H X. Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol, 2007, 49: 742–750[15]Nakashima K, Shinwari Z K, Sakuma Y, Seki M, Miura S, Shinozak K, Yamaguchi-Shinozaki K. Organization and expression of two arabidopsis DREB2 genes encoding DRE binding proteins involved in dehydration- and high-salinity responsive gene expression. Plant Mol Biol, 2000, 42: 657–665[16]Tian X H, Li X P, Zhou H L, Zhang J S, Gong Z Z, Chen S Y. OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. J Integr Plant Biol, 2005, 47: 467–476[17]Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozakia K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18: 1292–1309[18]Qin Q L, Liu J G, Zhang Z, Peng R H, Xiong A S, Yao Q H, Chen J M. Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza sativa L. Mol Breed, 2007, 19: 329–340[19]Gao M J, Allard G, Byass L, Flanagan A M, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol, 2002, 49: 459–471[20]Qin F, Sakuma Y, Li J, Liu Q, Liu Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1. CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052[21]Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot, 2009, 60: 121–135[22]Oh S J, Kwon C W, Choi D W, Song S I, Kim J K. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J, 2007, 5: 646–656[23]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008, 30: 2191–2198[24]Huang B, Jin L G, Liu J Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE binding protein from cotton (Gossypium hirsutum). J Plant Physiol, 2008, 165: 214–223[25]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743[26]Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical J, 1954, 57: 508–514[27]Zhang D Z, Wang P H, Zhao H X. Determination of the content of free proline in wheat leaves. Plant Physiol Commun, 1990, 4: 62–65[28]Sakuma Y, Liu Q, Dubouzeta J G, Abea H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998–1009[29]Wang P-R(王平荣), Deng X-J(邓晓建), Gao X-L(高晓玲), Chen J(陈静), Wan J(万佳), Jiang H(姜华), Xu Z-J(徐正君). Progress in the study on DREB transcription factor. Hereditas (遗传), 2006, 28: 369–374 (in Chinese with English abstract)[30]Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平), Wang Z-Z(王自章). Isolation and identification of PNDREB1: a new DREB transcription factor from peanut (Arachis hypogaea L.). Acta Agron Sin (作物学报), 2009, 35: 1973–1980 (in Chinese with English abstract)[31]Okamuro J K, CASTER B, Villarroel R, Montagu M V, Jofuku K D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076–7081[32]Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K. Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol, 1997, 33: 857–865[33]Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平). Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Hereditas (遗传), 2009, 31: 236–244 (in Chinese with English abstract) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[3] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[4] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[5] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[8] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[9] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[10] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[11] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[12] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[13] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[14] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[15] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
|