作物学报 ›› 2013, Vol. 39 ›› Issue (02): 309-318.doi: 10.3724/SP.J.1006.2013.00309
吴琼1,**,齐波1,**,赵团结1,姚鑫锋2,朱艳2,盖钧镒1,*
WU Qiong1,**,QI Bo1,**,ZHAO Tuan-Jie1,YAO Xin-Feng2,ZHU Yan2,GAI Jun-Yi1,*
摘要:
[1]Ma B L, Morrison M J, Dwyer L M. Canopy Light reflectance and field greenness to assess nitrogen fertilization and yield of Maize. Agron J, 1996, 88: 915–920[2]Clevers J G P W. A simplified approach for yield prediction of sugar beet based on optical remote sensing data. Remote Sens Environ, 1997, 61: 221–228[3]Clevers J G P W, Büker C, van Leeuwen H J C, Bouman B A M. A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sens Environ, 1994, 50: 161–170[4]Vaesen K, Gilliams S, Nackaerts K, Coppin P. Ground-measured spectral signatures as indicators of ground cover and leaf area index: the case of paddy rice. Field Crops Res, 2001, 69: 13–25[5]Slafer G A, Molina-Cano J L, Savin R, Araus J L, Romagosa I. Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality. Binghamton, NH: Haworth Press, 2002. pp 387–412[6]Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy re?ectance indices and discriminant analysis. Crop Sci, 1995, 35: 1400–1405[7]Aparicio N, Villegas D, Araus J L, Casadesus J, Royo C. Relationship between growth traits and spectral vegetation indices in durum wheat. Crop Sci, 2002, 42: 1547–1555[8]Aparicio N, Villegas D, Casadesus J, Araus J L, Royo C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron J, 2000, 92: 83–91[9]Aparicio N, Villegas D, Royo C, Casadesus J, Araus J L. Effect of sensor view angle on the assessment of agronomic traits by ground level hyper-spectral re?ectance measurements in durum wheat under contrasting Mediterranean conditions. Int J Remote Sens, 2004, 25: 1131–1152[10]Royo C, Aparicio N, Villegas D, Casadesus J, Monneveux P, Araus J L. Usefulness of spectral re?ectance indices as durum wheat yield predictors under contrasting Mediterranean environments. Int J Remote Sens, 2003, 24: 4403–4419[11]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sens Environ, 1989, 27: 119–127[12]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86: 542–553[13]Wang X-Z(王秀珍), Huang J-F(黄敬峰), Li Y-M(李云梅), Wang R-C(王人潮). Study on hperspectral remote sensing estimation models for the ground fresh biomass of rice. Acta Agron Sin (作物学报), 2003, 29(6): 815–821 (in Chinese with English abstract)[14]Liu L-Y(刘良云), Wang J-H(王纪华), Huang W-J(黄文江), Zhao C-J(赵春江), Zhang B(张兵), Tong Q-X(童庆禧). Improving winter wheat yield prediction by novel spectral index. Trans Chin Soc Agric Eng (农业工程学报), 2004, 20(1): 172–175 (in Chinese with English abstract)[15]Tang Y-L(唐延林), Huang J-F(黄敬峰), Wang R-C(王人潮), Wang F-M(王福民). Comparison of yield estimation simulated models of rice by remote sensing. Trans CSAE (农业工程学报), 2004, 20(1): 166–171 (in Chinese with English abstract)[16]Xue L-H(薛利红), Cao W-X(曹卫星), Luo W-H(罗卫红). Rice yield forecasting model with canopy reflectance spectra. J Remote Sens (遥感学报), 2005, 9(1): 100–105 (in Chinese with English abstract)[17]Moran M S, Inoue Y, Barnes E M. Opportunities and limitations for image based remote sensing in precision crop management. Remote Sens Environ, 1997, 61: 319–346[18]Curran P J, Dungan J L, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol, 1990, 7: 33–48[19]Pu R-L(浦瑞良), Gong P(宫鹏). Hyperspectral Remote Sensing and Its Applications (高光谱遥感及其应用). Beijing: Higher Education Press, 2000 (in Chinese)[20]Miller J R, Wu J Y, Boyer M G, Belanger M, Hare E W. Season patterns in leaf reflectance red edge characteristics. Intl J Remote Sens, 1991, 12: 1509–1523[21]Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sens Environ, 1990, 33: 55–64[22]Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens Environ, 1999, 67: 267–287[23]Clark R N, Roush T L. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res, 1984, 89: 6329–6340[24]Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytol, 1999, 143: 105–117[25]Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ, 2002, 80: 76–87[26]Metternicht G. Vegetation indices derived from high-resolution airborne videography for precision crop management, Int J Remote Sens, 2003, 24: 2855–2877[27]Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sens Environ, 2001, 76: 349–359[28]Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens Environ, 2004, 89: 393–408[29]Feng W(冯伟). Mmonitoring nitrogen status and growth characters with canopy hyperspectral remote sensing in wheat. PhD Dissertation of Nanjing Agricultural University, 2007. p 31 (in Chinese with English abstract)[30]Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ, 2004, 90: 337–352[31]Yang F(杨飞), Zhang B (张柏), Song K-S(宋开山), Wang Z-M(王宗明), Liu D-W(刘殿伟), Liu H-J(刘焕军), Li F(李方), Li F-X(李凤秀), Guo Z-X(国志兴), Jin H-A(靳华安). Comparison of methods for estimating soybean leaf area index. Spectroscopy Spectral Anal (光谱学与光谱分析), 2008, 28(12): 2951–2955 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[3] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[4] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[8] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[9] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[10] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[11] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[12] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[13] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[14] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[15] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
|