欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 319-329.doi: 10.3724/SP.J.1006.2013.00319

• 耕作栽培·生理生化 • 上一篇    下一篇

利用光谱红边参数监测黄萎病棉叶叶绿素和氮素含量

陈兵1, 韩焕勇1,王方永1,刘政1,邓福军1,林海1,余渝1,李少昆2,3,王克如2,3,肖春华2,3   

  1. 1新疆农垦科学院棉花研究所 / 农业部西北内陆区棉花生物学与遗传育种重点实验室 / 国家棉花改良中心新疆生产建设兵团分中心, 新疆石河子 832003; 2中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程, 北京 100081; 3新疆兵团绿洲生态农业重点开放实验室 / 石河子大学, 新疆石河子 832000
  • 收稿日期:2012-06-20 修回日期:2012-11-16 出版日期:2013-02-12 网络出版日期:2012-12-11
  • 基金资助:

    本研究由国家自然科学基金项目(41161068, 30860139, 31071371)和新疆农垦科学院科技引导计划项目(YYD201102)资助。

Monitoring Chlorophyll and Nitrogen Contents in Cotton Leaf Infected by Verticillium wilt with Spectra Red Edge Parameters

CHEN Bing1,HAN Huan-Yong1,WANG Fang-Yong1,LIU Zheng1,DENG Fu-Jun1,LIN Hai1,YU Yu1,LI Shao-Kun2,3,WANG Ke-Ru2,3,XIAO Chun-Hua2,3   

  1. 1 Cotton Institute, Xinjiang Academy Agricultural and Reclamation Science / Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Ministry of Agriculture / Xinjiang Production & Construction Corps Subcenter of National Cotton Improvement Center, Shihezi 832000, China; 2 National Key Facility for Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China; 3 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Corps / Shihezi University, Shihezi 832003, China
  • Received:2012-06-20 Revised:2012-11-16 Published:2013-02-12 Published online:2012-12-11

摘要:

以黄萎病胁迫下棉花叶片为试验材料, 分析感染病害棉叶叶绿素(Chl)含量和氮素含量(LNC)与光谱红边参数间的关系, 建立病害棉叶Chl含量和LNC的光谱红边参数诊断模型。结果表明:(1)随着病情加重, 棉叶Chl aChl bChl a+bLNC逐渐减小, 其中Chl a下降最快, Chl b下降最慢;(2)黄萎病叶片光谱反射率在可见光区(400~700 nm), 近红外光区(700~1300 nm)和短波红外光区(1300~2500 nm)呈现逐渐上升趋势, 520~680 nm间达极显著(P<0.01);光谱吸收率在可见光区和短波红外光区呈现逐渐下降的趋势, 达极显著(P<0.01), 在近红外光区呈现先升后降的趋势。(3)病害棉叶红边位置(REP)、红边振动幅(Dr)、红谷位置(Lo)、红边深度(Depth672)和红边面积(Area672)的值均减小, 红边宽度(Lwidth)的值增加, Area672减小的幅度最大, Dr减小的幅度最小, Lwidth增加的幅度较大;(4)病害棉叶Chl a含量、Chl b含量、Chl a+b含量和LNC均与红边参数REPLoDepth672Area672呈极显著正相关, Lwidth呈极显著负相关, Dr未达显著相关;(5)利用红边参数建立的棉叶Chl含量和LNC的诊断模型均达极显著(P<0.01), 其中以Area672为自变量建立的病害棉叶Chl aChl a+bLNC的诊断模型和Lo为自变量建立的Chl b诊断模型的精度最高, 能很好的诊断病害棉叶Chl含量和LNC

关键词: 棉花, 病害胁迫, 高光谱, 叶绿素含量, 氮素含量, 诊断模型

Abstract:

The relationship between chlorophyll (Chl) content, leaf nitrogen content (LNC) and red edge parameters were analyzed, and diagnose models of spectra red edge parameters were established for cotton leaf infected by Verticillium wilt. Results showed that: (1) Chl a, Chl b, Chl a+b, and LNC decreased with increasing in severity level (SL) of Verticillium wilt in cotton leaves, in which Chl a showed the highest and Chl b showed the lowest decrement rate, respectively. (2) Spectrum reflectance increased with increasing severity of Verticillium wilt in the visible region (400–700 nm), near-infrared region (700–1300 nm) and short infrared region (1300–2500 nm), and significantly higher increment was detected in 525–680 nm region (P<0.01). Spectrum absorption decreased significantly with increasing SL of Verticillium wilt in the visible region and short infrared region (P<0.01), and which increased first and then decreased in near-infrared region. (3) Decrease of REP, Dr, Lo, Depth672, Area672 and increase of Lwidth was detected among red edge parameters, in which Area672 showed the highest and Dr showed the Lowest decrement rate, respectively. (4) There was significant positive correlation between Chl a, Chl b, Chl a+b, LNC of cotton leaves and REP, Lo, Depth672, Area672 of red edge parameters, significant negative correlation was found for Lwidth of red edge parameter, while no significant correlation was found for Dr of red edge parameter. (5) Diagnose models of Chl a, Chl a+b, and LNC for Verticillium wilt in cotton leaves with the independent variables Area672, and Chl b with the independent variables Lo reached the best estimated precision (P<0.01). This could diagnose severity level of Verticillium wilt in cotton leaves effectively.

Key words: Cotton, Disease stress, Hyper spectra, Chlorophyll content, Nitrogen content, Diagnose models

[1]Chen B, Li S K, Wang K R, Zhou G Q, Bai J H. Evaluating the severity level of cotton Verticillium using spectral signature analysis. Int J Remote Sens, 2012, 33: 2706–2724



[2]Reddy K R, Koti S, Davidonis G H, Reddy V R. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield and fiber quality. Agron J, 2004, 96: 1148–1157



[3]Lee Y J, Yang C M, Chang K W, Shen Y. A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agron J, 2008, 100: 205–212



[4]Hatfield J L. Remote detection of crop stress: application to plant pathology. Phytopathology, 1990, 80: 37–39



[5]Liu W(刘炜), Chang Q-R(常庆瑞), Guo M(郭曼), Xing D-X(邢东兴), Yuan Y-S(员永生). Monitoring of leaf nitrogen content in summer corn with first derivative of spectrum based on modified red edge. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报•自然科学版), 2010, 38(4): 91–98 (in Chinese with English abstract)



[6]Smith K L, Steven M D, Colls J J. Use of hyperspectral derivative ratios in the red edge region to identify plant stress responses to gas leak. Remote Sens Environ, 2004, 92: 207–217



[7]Jiang J-B(蒋金豹), Chen Y-H(陈云浩), Huang W-J(黄文江). Using hyper-spectral derivative index to monitor winter wheat diseases. Pectroscopy Spectral Anal (光谱学与光谱分析), 2007, 27(12): 2475–2479 (in Chinese with English abstract)



[8]Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ, 2002, 81: 45–57



[9]Ponzoni F J, Goncalves J L. Spectral features associated with nitrogen, phosphorus, and potassium deficiencies in Eucalyptus saligna seedling leaves. Int J Remote Sens, 1999, 20: 2249–2264



[10]Schlemmer M R, Francis D D, Shanahan J F, Schepers J S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J, 2005, 97: 106–112



[11]Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Environ, 1998, 66: 273–285



[12]Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens Environ, 1995, 53(3): 199–211



[13]Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ, 2002, 81: 416–426



[14]Errmann I, Karnieli A, Bonfil D J, Cohen Y, Alchanatis V. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int J Remote Sens, 2010, 31: 5127–5143



[15]Huang W-J(黄文江), Wang J-H(王纪华), Liu L-Y(刘良云), Zhao C-J(赵春江), Wang J-D(王锦地), Du X-H(杜小鸿). The red edge parameters iversification disciplinarian and its application for nutrition diagnosis. Remote Sens Technol Appl (遥感技术与运用), 2003, 18(4): 206–211 (in Chinese with English abstract)



[16]Lamb D W, Steyn-Ross M, Schaare P, Hanna M M, Silvester W, Steyn-Ross A. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: theoretical modeling and experimental observations. Int J Remote Sens, 2002, 23: 3619–3648



[17]Jiang J-B(蒋金豹), Chen Y-H(陈云浩), Huang W-J(黄文江), Li J(李京). Hyperspectral estimation models for LTN content of winter wheat canopy under stripe rust stress. Trans CSAE (农业工程学报), 2008, 24(1): 35–39 (in Chinese with English abstract)



[18]Ju C H, Tian Y C, Yao X, Cao W X, Zhu Y, Hannaway D B. Estimating leaf chlorophyll content using red edge parameters. Pedosphere, 2010, 20: 633–644



[19]Xue L-H(薛利红), Yang L-Z(杨林章). Comparative study on estimation of chlorophyll content in spinach leaves using various red edge position extraction techniques. Trans CSAE (农业工程学报), 2008, 24(9): 165–169 (in Chinese with English abstract)



[20]Yao X(姚霞), Tian Y-C(田永超), Liu X-J(刘小军), Cao W-X(曹卫星), Zhu Y(朱艳). Comparative study on monitoring canopy leaf nitrogen status on red edge position with different algorithms in wheat. Sci Agric Sin (中国农业科学), 2010, 43(13): 2661–2667 (in Chinese with English abstract)



[21]Zhang Q-L(张清林), Chen W-H(陈文惠), Zhang Y-H(张永贺), Guo X-C(郭啸川), Chu W-D(褚武道), Xu W-M(许炜敏). Estimation m odels of chlorophyll contents in leaves of Acacia confusa based on the red edge position. J Subtrop Resour Environ (亚热带资源与环境学报), 2011, 6(3): 9–17 (in Chinese with English abstract)



[22]Cho M A, Skidmore A K.A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ, 2006, 101: 181–193



[23]Huang C-Y(黄春燕), Wang D-W(王登伟), Zhang Y-X(张煜星). Estimation of cotton canopy chlorophyll density and leaf area index based on red-edge parameters. Trans CSAE (农业工程学报), 2009, 25(S2): 137–141 (in Chinese with English abstract)



[24]Tan C-W(谭昌伟), Wang J-H(王纪华), Guo W-S(郭文善), Lu J-F(陆建飞), Zhang H-C(张洪程), Jiang H-R(蒋海荣). Agronomy parameters of summer maize diagnosed by red edge parameters obtainable from remotely sensing data. J Fujian Agric For Univ (Nat Sci Edn)(福建农林大学学报•自然科学版), 2006, 35(2): 123–128 (in Chinese with English abstract)



[25]Main R, Cho M A, Mathieu R, O’Kennedy M M, Ramoelo A, Koch S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J Photogram Remote Sens, 2011, 66: 751–761



[26]Huang J F, Wang X Z, Wang R C. The red edge parameters as indicators of rice nitrogen levels. Multispect Hyperspect Remote Sens Instr Appl, 2003, 4897: 311–317



[27]Fang Z-D(方中达). Research Method for Plant Disease (植病研究方法). Beijing: Agriculture Press, 1979. pp 3–5 (in Chinese)



[28]Danson F M. red edge response to leaf area index. Int J Remote Sens, 1995, 16: 183–188



[29]Bao S-D(鲍士旦). Analysis for Soil and Agricultural Chemistry (土壤农化分析) 3rd edn. Beijing: China Agriculture Press, 2000. pp 14–38 (in Chinese)



[30]Demetrialdes-Shan T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sens Environ, 1990, 33: 55–64



[31]Chen B(陈兵), Li S-K(李少昆), Wang K-R(王克如), Wang F-Y(王方永), Tan H-Z(谭海珍), Liu G-Q(刘国庆), Chen J-L(陈江鲁). Spectrum characteristics of cotton single leaf infected by Verticillium wilt and estimation on severity level of disease. Sci Agric Sin (中国农业科学), 2007, 40(12): 2709–2715 (in Chinese with English abstract)



[32]Jing X(竞霞), Wang J-H(王纪华), Song X-Y(宋晓宇) , Xu X-G(徐新刚), Chen B(陈兵), Huang W-J(黄文江). Continuum removal method for cotton Verticillium wilt severity monitoring with hyperspectral data. Transact CSAE (农业工程学报), 2010, 26(1): 193–198 (in Chinese with English abstract)



[33]Liang S-Z(梁守真), Shi P(施平), Ma W-D(马万栋), Xing Q-G(邢前国), Yu L-J(于良巨). Relational analysis of spectra and red-edge characteristics of plant leaf and leaf biochemical constituent. Chin J Eco Agric (中国生态农业学报), 2010, 18(4): 804–809 (in Chinese with English abstract)



[34]Lu Y-L(卢艳丽), Li S-K(李少昆), Bai Y-L(白由路), Xie R-Z(谢瑞芝), Gong Y-M(宫永梅). Spectral red edge parametric variation and correlation analysis with n content in winter wheat. Remote Sens Technol Appl (遥感技术与应用), 2007, 21(1): 1–7 (in Chinese with English abstract)

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!