欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 330-342.doi: 10.3724/SP.J.1006.2013.00330

• 耕作栽培·生理生化 • 上一篇    下一篇

马铃薯/玉米套作对马铃薯品种光合特性及产量的影响

黄承建1,2,赵思毅2,王龙昌1,*,王季春1,*,赵勇1,蔡叶茂1,滕艳1,杨国才1   

  1. 1 西南大学农学与生物科技学院 / 南方山地农业教育部工程研究中心, 重庆400716; 2 四川省达州市农业科学研究所, 四川达州 635000
  • 收稿日期:2012-05-09 修回日期:2012-10-09 出版日期:2013-02-12 网络出版日期:2012-12-11
  • 通讯作者: 王龙昌, E-mail: wanglc2003@163.com; 王季春, E-mail: wchun1963@163.com
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100402)和国家自然科学基金项目(31271673)资助。

Effect of Potato/Maize Intercropping on Photosynthetic Characteristics and Yield in Two Potato Varieties

HUANG Cheng-Jian1,2,ZHAO Si-Yi2,WANG Long-Chang1,*,WANG Ji-Chun1,*,ZHAO Yong1,CAI Ye-Mao1,TENG Yan1,YANG Guo-Cai1   

  1. 1 College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China; 2 Dazhou Institute of Agricultural Sciences, Sichuan 635000, China
  • Received:2012-05-09 Revised:2012-10-09 Published:2013-02-12 Published online:2012-12-11
  • Contact: 王龙昌, E-mail: wanglc2003@163.com; 王季春, E-mail: wchun1963@163.com

摘要:

以马铃薯品种中薯5(早熟, 株型直立)和米拉(中晚熟, 株型扩散)单作为对照, 在大田条件下, 调查马铃薯/玉米套作模式中2个品种光合指标的变化、块茎形成期至块茎增长期不同叶位气体交换参数的变化, 分析光合指标对产量的影响。结果表明, 整个生育期马铃薯叶绿素含量(Chl a+Chl b)套作高于单作, 叶面积指数(LAI)、比叶重(SLW)和叶绿素a/b(Chl a/b)套作低于单作。从块茎形成期至块茎增长期, 群体光合有效辐射(PAR)、水分利用效率(WUE)、气孔限制值(Ls)呈下降趋势, 净光合速率(Pn)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)、蒸腾速率(Tr)呈上升趋势。PARPnGsTr均随叶位的降低显著下降, 套作下降幅度低于单作。套作中、下层叶片Pn的下降受气孔因素和非气孔因素限制。套作降低了马铃薯上层叶Pn, 提高了中、下层叶Pn。套作中薯5号的Chl a+Chl b生育前期高于米拉, 生育后期低于米拉, SLW则相反; LAIChl a/b整个生育期高于米拉。套作中薯5号上层叶PAR高于米拉, 中、下层叶PAR低于米拉; 套作中薯5号上层叶Pn与米拉相近, 中、下层叶Pn高于米拉; 各层叶WUELs高于米拉, GsCiTr低于米拉。总之, 套作改变了马铃薯的光合特性, 并显著降低了马铃薯块茎产量; 套作恶化了中薯5/玉米复合群体的光环境, 改善了米拉/玉米复合群体的光环境, 米拉/玉米套作体系土地当量比(1.40)大于中薯5/玉米体系(1.24), 显示了较强的套作优势, 宜在生产中优先推广。

关键词: 马铃薯, 玉米, 套作, 单作, 叶位, 光合特性, 产量

Abstract:

The intercropping of potato and maize is widely practiced in China. In the potato/maize system, competition for light is an issue as the leaves of potato and maize become different strata within the canopy. The potato/maize intercropping trials using two potato varieties including Zhongshu 5 (early-maturing variety with erect branches) and Mila (mid-late maturing variety with spread branches) with the sole cropping potato as contro1 were carried out to determine the dynamic changes of LAI, SLW, Chl a+b, Chl a/b ratio, photosynthetical active radiation (PAR), gas exchange attributes in leaves at three position levels at tuber initiation stage and tuber expanding stage and yield. The results indicated that intercropping led to decrease LAI, SLW and Chl a/b ratio and increase Chl a+b. In addition, the gradual decrease in PAR, water use efficiency (WUE), stomatal limitation (Ls=1–Ci/Ca, Ca: ambient CO2 concentration) and the increase in net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 (Ci)and transpiration rate (Tr) were observed from tuber initiation stage to tuber expanding stage. There was a continuous signi?cant reduction in PAR, Pn, Gs and Tr from the upper leaves to the middle and lower leaves in all treatments, with a lower reduction under intercropping than under sole cropping. The variations in Pn, Gs, Ci, and Ls indicated the decreased photosynthetic activity in the middle and lower leaves pertaining, to both stomatal and non-stomatal mechanisms. Intercropping also declined Pn in the upper leaves and elevated Pn in the middle and lower leaves. Furthermore, there were higher Chl a+b in vegetative growth stage and tuber initiation stage and lower Chl a+b in tuber expanding stage and starch accumulation stage in Zhongshu 5/maize than in Mira/maize system, with the opposite changing trend for SLW. Higher LAI and Chl a/b ratio at all developmental stages, higher PAR in the upper leaves and lower PAR in the middle and lower leaves were observed, and higher Pn in the middle and lower leaves in Zhongshu 5 than in Mira in intercropping systems but the similar Pn in the upper leaves. In comparison with Mira, there were lower Gs, Ci, and Tr and higher WUE and Ls in leaves at the same position levels in Zhongshu 5. In summary, intercropping led to substantial reduction in tuber yield at harvest time due to the change on the light environment and the photosynthetic characteristics of potato in potato/maize systems. Nonetheless, intercropping deteriorated the light environment for Zhongshu 5/maize system while improved the light environment for Mira/maize system, which led to lower LER in the former (1.24) than in the latter (1.40), showing the stronger intercropping superiority for Mira/maize system in the production.

Key words: Potato, Maize, Intercropping, Monoculture, Leaf position, Photosynthetic Characteristics, Yield

[1]Al-Dalain S A. Effect of intercropping of Zea maize with potato Solanum tuberosum L. on potato growth and on the productivity and land equivalent ratio of potato and Zea maize. Agric J, 2009, 4: 164–170



[2]Yildirima E, Guvenc I. Intercropping based on cauli?ower: more productive, pro?table and highly sustainable. Eur J Agron, 2005, 22: 11–18



[3]He X H, Zhu S S, Wang H N, Xie Y, Sun Y, Gao D, Yang J, Liu L, Li Q X, Zhang S B, Zhao G H, Hu M C, Jiang K M, Li C Y, Zhu Y Y. Crop diversity for ecological disease control in potato and maize. J Resourc Ecol, 2010, 1: 45–50



[4]Dimitrios B, Panayiota P, Aristidis K, Sotiria P, Anestis K, Aspasia E. Weed suppressive effects of maize-legume intercropping in organic farming. Intl J Pest Manag, 2010, 56: 173–181



[5]Dahmardeh M, Ghanbari A, Syahsar B A, Ramrodi M. The role of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afric J Agric Res, 2010, 5: 631–636



[6]Resende A L S, Viana A J D, Oliveira R J, Aguiar-Menezes E D, Ribeiro R D D, Ricci M D F, Guerra J G M. Performance of the kale-coriander intercropping in organic cultivation and its influence on the populations of ladybeetles. Hortic Bras, 2010, 28: 41–46



[7]Mushagalusa G N, Ledent J F, Draye X. Shoot and root competition in potato/maize intercropping: effects on growth and yield. Environ Exp Bot, 2008, 64:180–188



[8]Chen Y-X(陈玉香), Zhou D-W(周道玮), Zhang Y-F(张玉芬). Yield and photosynthesis of intercropped maize and alfalfa. Acta Agrest Sin (草地学报), 2004, 12(2):107–112 (in Chinese with English abstract)



[9]Makoi J H J R, Chimphango S B M, Dakora F D. Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum. Photosynthetica, 2010, 48: 143–155



[10]Song Y-X(宋艳霞), Yang W-Y(杨文钰), Li Z-X(李卓玺), Yu X-B(于晓波), Guo K(郭凯), Xiang D-B(向达兵). The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(4): 474–479 (in Chinese with English abstract)



[11]Wang Z(王竹), Yang W-Y(杨文钰), Wu Q-L(吴其林). Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agron Sin (作物学报), 2007, 33(9): 1502–1507 (in Chinese with English abstract)



[12]Jiao N-Y(焦念元), Ning T-Y(宁堂原), Zhao C(赵春), Wang Y(王芸), Shi Z-Q(史忠强), Hou L-T(侯连涛), Fu G-Z(付国占), Jiang X-D(江晓东), Li Z-J(李增嘉). Characters of photosynthesis in intercropping system of maize and peanut. Acta Agron Sin (作物学报), 2006, 32(6): 917–923 (in Chinese with English abstract)



[13]Zuo Y M, Zhang F S, Li X L, Cao Y P. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil, 2000, 220: 13–25



[14]He C-H(何承刚), Huang G-B(黄高宝), Jiang H(姜华). Effect of nitrogen levels on content of chlorophyll and quality of wheat and corn in monocropping and intercropping. Agric Res Arid Areas (干旱地区农业研究), 2004, (22)3: 32–34 (in Chinese with English abstract)



[15]Vos J, Oyarzun P J. Photosynthesis and stomatal conductance of potato leaves – effects of leaf age, irradiance and leaf water potential. Photosynth Res, 1987, 11: 253–264



[16]Jin S H, Wang P M, Zhao K, Yang Y Q, Yao S, Jiang D A. Characteristics of gas exchange and chlorophyll fluorescence in different position leaves at booting stage in rice plants. Rice Sci, 2004, 11: 283–289



[17]Tian Y-C(田永超), Cao W-X(曹卫星), Wang S-H(王绍华), Zhu Y(朱艳). Variation of water and nitrogen contents & photosynthesis at different position leaves of rice under different soil water and nitrogen conditions. Acta Agron Sin (作物学报), 2004, 30(11): 1129–1134 (in Chinese with English abstract)



[18]Busch J, Losch R, Meixner F X, Ammann C. CO2 and H2O gas exchange of a triticale field: I. leaf level porometry and upscaling to canopy level. Phys Chem Earth, 1996, 21: 143–149



[19]Li S-D(李升东), Wang F-H(王法宏), Si J-S(司纪升), Kong L-A(孔令安), Feng B(冯波), Zhang B(张宾), Liu J-J(刘建军), Qin X-S(秦晓胜). Light distribution in wheat population and its effect on leaf photosynthetic rate under raised-bed planting method. Chin J Eco-Agric (中国生态农业学报), 2009, 17(3): 465−468 (in Chinese with English abstract)



[20]Han Q-F(韩清芳), Jia Z-K(贾志宽), Wang J-P(王俊鹏), Wan S-M(万素梅), Yang B-P(杨保平), Dong Z-X(董志新). Study on diurnal photosynthetic characteristics in different alfalfa leaf layers in loess plateau. Acta Agrest Sin (草地学报), 2009, 17(5): 558–563 (in Chinese with English abstract)



[21]Ai X-Z(艾希珍), Zhang Z-X(张振贤), Wang S-H(王绍辉), Cui Z-F(崔志峰). Study on photosynthetic characteristics of different leaf position leaves in ginger. Acta Agric Boreali-Occident Sin (西北农业学报), 1998, 7(2): 101–103 (in Chinese with English abstract)



[22]Dwyer L M, Stewart D W. Effect of leaf age and position on net photosynthetic rates in maize (Zea mays L.). Agric For Meteorol, 1986, 37: 29–46



[23]Zuo Z-P(左振朋), Sun Q-Q(孙庆泉), Dong L-H(董鲁浩), Wang J(王婧), Ma D-C(马登超), Dong S-T(董树亭). Comparison of photosynthetic characteristics of leaves in pop corn, sweet corn, and glutinous corn during the late growing period. Acta Agron Sin (作物学报), 2009, 35(10): 1930−1935 (in Chinese with English abstract)



[24]Arnon D T. Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15



[25]Connolly J, Goma H C, Rahim K. The information content of indicators in intercropping research. Agric Ecosyst Environ, 2001, 87: 191–207



[26]Vos J, Van der Putten P E L. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. Eur J Agron, 2001, 14: 209–220



[27]Valladares F, Niinemets Ü. Shade tolerance, a key plant fearure of complex nature and consequences. Ann Rev Ecol, Evolut System, 2008, 39: 237–257



[28]Yamazaki J, Takahisa S, Emiko M, Yasumaro K. The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the light environment of their natural habitat. J Exp Bot, 2005, 56: 1517–1523



[29]Johnston M, Onwueme I C. Effect of shade on photosynthetic pigments in the tropical root crops: yam, taro, tammia, cassva and sweet potato. Exp Agric, 1998, 34: 301–302



[30]Wu Y Y, Zhu Z H. Temperate agroforestry in China. In: Gordon A M, Newman S M, eds. Temperate Agroforestry Systems. Wallingford, UK: CAB international Press, 1997. pp 149–179



[31]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Publishers, 2002. pp 86–89 (in Chinese)



[32]Brodribb T. Dynamics of changing intercellular CO2 concentration (Ci) during drought and determination of minimum functional Ci. Plant Physiol, 1996, 111: 179–185



[33]Xu Q(徐强), Cheng Z-H(程智慧), Lu T(卢涛), Xie B-Y(谢宝英). Light interception and utilization of maize-capsicum strip relay intercrop. Chin J Eco-Agric (中国生态农业学报), 2010, 18(5): 969–976 (in Chinese with English abstract)



[34]Hauggaard-Nielsen H, Jensen E S. Evaluating pea and barley cultivars for complementarily in intercropping at different levels of soil N availability. Field Crops Res, 2001, 3: 185–196



[35]Ifenkwe O P, Odurukwe S O. Potato/maize intercropping in the Jos Plateau of Nigeria. Field Crops Res, 1990, 25: 73–82



[36]Singhy B B, Mohan Raj D R, Dashiell K E, Jackai L E N. Advances in Cowpea Research. Hong Kong: Sayce Publishing, Devon, UK, 1997. pp 130–134



[37]Gaafar A M, Salih A A, Luukkanen1 O, El Fadl M A, Kaarakka V. Improving the traditional Acacia senegal-crop system in Sudan: the effect of tree density on water use, gum production and crop yields. Agrofor Syst, 2006, 66: 1–11



[38]Maingi J M, Shisanya C A, Gitonga N M, Hornetz B. Nitrogen fixation by common bean (Phaseolus vulgaris L.) in pure and mixed stands in semi-arid south-east Kenya. Eur J Agron, 2001, 14: 1–12



[39]Kuruppuarachchi D S P. Intercropped potato (Solamum spp.): effect of shade on growth and tuber yield in the northwestern regosol belt of Sri Lanka. Field Crops Res, 1990, 25: 61–72

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[14] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[15] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!