欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1445-1451.doi: 10.3724/SP.J.1006.2013.01445

• 耕作栽培·生理生化 • 上一篇    下一篇

生物炭对水稻根系形态与生理特性及产量的影响

张伟明,孟军,王嘉宇,范淑秀,陈温福*   

  1. 沈阳农业大学 / 辽宁省生物炭工程技术研究中心, 辽宁沈阳110866
  • 收稿日期:2012-07-16 修回日期:2012-11-16 出版日期:2013-08-12 网络出版日期:2013-01-04
  • 通讯作者: 陈温福, E-mail: wfchen5512@yahoo.com.cn
  • 基金资助:

    本研究由院士专项基金, 国家自然科学基金项目(31101105)和辽宁工程技术研究计划基金项目(2011402021)资助。

Effect of Biochar on Root Morphological and Physiological Characteristics and Yield in Rice

ZHANG Wei-Ming,MENG Jun,WANG Jia-Yu,FAN Shu-Xiu,CHEN Wen-Fu*   

  1. Shenyang Agricultural University / Biochar Engineering Technology Research Center of Liaoning Province, Shenyang 110866, China
  • Received:2012-07-16 Revised:2012-11-16 Published:2013-08-12 Published online:2013-01-04
  • Contact: 陈温福, E-mail: wfchen5512@yahoo.com.cn

摘要:

明确生物炭对水稻根系与产量的效应,探明生物炭在水稻生产上应用的潜力与价值。采用盆栽试验研究了生物炭对超级粳稻不同生育期根系生长、形态特征及生理特性的影响。结果表明,土壤中施入生物炭能增加水稻生育前期根系的主根长、根体积和根鲜重,提高水稻根系总吸收面积和活跃吸收面积。在水稻生育后期,生物炭在一定程度上延缓根系衰老。根系伤流速率、根系活力和可溶性蛋白在整个生育期内均高于对照,同时维持了较为适宜的根冠比,根系生理功能增强;生物炭处理的水稻产量增加,表现为每穴穗数、每穗粒数、结实率提高,比对照平均增产25.28%。以每千克干土加20 g生物炭处理的产量最高,比对照提高了33.21%。生物炭处理对水稻根系形态特征的优化与生理功能的增强具有一定的促进作用。

关键词: 生物炭, 水稻, 根系性状, 产量

Abstract:

In order to clear the effects of biochar on rice root and yield and in further proved the value of biochar application on rice production, effects of biochar on root growth, morphological and physiological characteristics of super japonica rice were studied in a pot experiment. The results showed that biochar application in soil could increase the main root length, volume and fresh weight of rice roots during the earlier growing stage, enlarge root total absorption area and active absorption area. Biochar delayed root senescence and maintained a higher root activity to some extent in the later growth stage. Biochar promoted the root physiological activities, showing a higher bleeding rate, larger root activity and higher soluble protein content, as comparison with the control in the whole growth stage. The yield was 25.28% more than the control with an improved rice panicle number per hill, grain number per panicle and seed setting rate. The highest yield with a 33.21% increase was achived in the treatment with 20 g biochar per kilogram of dry soil. Biochar plays a promoting role in optimizing morphological and physiological characteristics of rice roots.

Key words: Biochar, Rice, Root traits, Yield

[1]Chen W-F(陈温福), Zhang W-M(张伟明), Meng J(孟军), Xu Z-J(徐正进). Researches on biochar application technology. Engineering Sci (中国工程科学), 2011, 13(2): 83–89 (in Chinese with English abstract)



[2]Braida W J, Pignatello J J, Lu Y F, Ravikovitch P I, Neimark A V, Xing B S. Sorption hystersis of benzene in charcoal particles. Environ Sci Technol, 2003, 37: 409–417



[3]Kramer R W, Kujawinski E B, Hatcher P G. Identification of black carbon derived structures in a volcanic ash soil humicacid by Fourier transformion cyclotron resonance mass spectrometry. Environ Sci Technol, 2004, 38: 3387–3395



[4]Lehmann J, da Silva J P, Steiner C, Nehls T, Zech W, Glaser B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil, 2003, 249: 343–357



[5]Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol Fert Soils, 2002, 35: 219–230



[6]Steiner C, Glaser B, Teixeira W G, Lehmann J, Blum W E H, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Plant Nutr Soil Sci, 2008, 171: 893–899



[7]Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad J O, Thies J, Luizao F J, Petersen J, Neves E G. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J, 2006, 70: 1719–1730



[8]Steiner C, Teixeira W G, Lehmann J, Nehls T, MacêDo J L V, Blum W E H, Zech W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 2007, 291: 275–290



[9]zehmann J, Weigl D, Peter I, Droppelmann K, Gebauer G, Goldbach H, Zech W. Nutrient interactions of alley-cropped Sorghum bicolor and Acacia saligna in a run off irrigation system in Northern Kenya. Plant Soil, 1999, 210: 249–262



[10]Cui Y-F(崔月峰), Zeng Y-C(曾雅琴), Chen W-F(陈温福). Applying effect of pellet active carbon and slow release fertilizer on maize. Liaoning Agric Sci (辽宁农业科学), 2008, (3): 5–8 (in Chinese with English abstract)



[11]Cui Y-F(崔月峰), Chen W-F(陈温福). Preliminary study of environment-friendly and biochar-based slow release fertilizer application effect on soybean and peanut. Liaoning Agric Sci (辽宁农业科学), 2008, (4): 41–43 (in Chinese with English abstract)



[12]Zhang W-M(张伟明), Zhang Q-Z(张庆忠), Chen W-F(陈温福). Effects of crop-residue-derived charcoal Amendment on growth and development of rice in a Cd-polluted soil. North Rice (北方水稻), 2009, 39(2): 4–7 (in Chinese with English abstract)



[13]Steiner C, Blum W E H, Zech W, de Macedo J L V, Teixeira W G, Lehmann J, Nehls T. Long term effects of manure, charcoal, and mineral: fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil, 2007, 291: 275–290



[14]Lehmann J, Weigl D, Peter I, Droppelmann K, Gebauer G, Goldbach H, Zech W. Nutrient interactions of alley-cropped Sorghum bicolor and Acacia saligna in a run off irrigation system in Northern Kenya. Plant Soil, 1999, 210: 249–262



[15]Glaser B, Haumaier L, Guggenberger G, Zech W. The “Terra Preta” phenomenon:a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 2001, 1: 37–41



[16]Liu T-J(刘桃菊), Qi C-H(戚昌瀚), Tang J-J(唐建军). Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin (中国农业科学), 2002, 35(11): 1416–1419 (in Chinese with English abstract)



[17]Cai K-Z(蔡昆争), Luo S-M(骆世明), Duan S-S(段舜山). The relationship between spatial distribution of rice root system and yield. J South China Agric Univ (华南农业大学学报), 2003, 24(3): 1–41 (in Chinese with English abstract)



[18]Zhu D-F(朱德峰), Lin X-Q(林贤青), Cao W-X(曹卫星). Effects of deep roots on growth and yield in two rice varieties. Sci Agric Sin (中国农业科学), 2001, 35(4): 1416–1419 (in Chinese with English abstract)



[19]Dong G-C(董桂春), Wang Y-L(王余龙), Wang J-G(王坚刚), Shan Y-H(单玉华), Ma A-J(马爱京), Yang H-J(杨洪建), Zhang C-S(张传胜), Cai H-R(蔡惠荣). Differences of root traits among varietal types in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(6): 749–755 (in Chinese with English abstract)



[20]Zhang X-Z(张宪政), Chen F-Y(陈凤玉), Wang R-F(王荣富). Plant Physiology Experimental Techniques(植物生理学实验技术). Shenyang: Liaoning Scientific and Technical Publishers, 1999 (in Chinese)



[21]Zhang X-Z(张宪政). Research Methods of Crop Physiology (作物生理研究法). Beijing: Agriculture Press, 1992. pp 140–142 (in Chinese)



[22]Chidumayo E N. Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, Zambia. For Ecol Manag, 1994, 70: 353–357



[23]Goldberg E D. Bla对照 Carbon in the Environment: Properties and Distribution. New York: John Wiley Press, 1985



[24]Lehmann J. A handful of carbon. Nature, 2007, 447: 143–144



[25]Lehmann J, daSilvaJr J P, Steiner C, Nehls T, Zech W, Glaser B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 2003, 249: 343–357



[26]Cornelissen G, Kukulska Z, Kalaitzidis S. Relations between environmental bla对照 carbon sorption and geochemical sorbent characteristics. Environ Sci Technol, 2004, 38: 3632–3640



[27]Oguntunde P G, Abiodun B J, Ajayi A E, van de Giesen N. Effects of charcoal production on soil physical properties in ghana. J Plant Nutr Soil Sci, 2008, 171: 591–596



[28]Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol Fert Soils, 2002, 35: 219–230



[29]Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag, 2011, 27: 110–115



[30]Laird D A, Fleming P, Davis D D, Hortonb R, Wangc B, Karlena D L. Impact of biochar amendment on the quality of a typical Midwestern agricultural soil. Geoderma, 2010, 158: 443–449



[31]Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol, 2004, 95: 255–257



[32]Accardi-Dey A, Gschwend P M. Assessing the combined roles of natural organic matter and black carbon as sorbents in sedi ments. Environ Sci Technol, 2002, 36: 21–29



[33]Simone E, KolbKevin J, Fcrmanich M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J, 2009, 73: 1173–1181



[34]Ogawa M. Symbiosis of people and nature in the tropics. Farm Jpn, 1994, l28: 10–34



[35]Saito M, Marumoto T. Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant Soil, 2002, 244: 273–279



[36]Warno D D, Lehmann J, Kuyper T W, Rillig M C. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant Soil, 2007, 300: 9–20

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!