欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1434-1444.doi: 10.3724/SP.J.1006.2013.01434

• 耕作栽培·生理生化 • 上一篇    下一篇

种植方式对杂交稻枝梗和颖花分化及退化的影响

刘利1,雷小龙1,王丽1,邓飞1,刘代银2,任万军1,*   

  1. 1四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室,四川成都 611130;2四川省农业技术推广总站,四川成都 610041
  • 收稿日期:2013-01-14 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-22
  • 通讯作者: 任万军,E-mail: rwjun@126.com
  • 基金资助:

    本研究由国家粮食丰产科技工程项目(2011BAD16B05)和国家公益性行业(农业)科研专项(201303129)资助。

Effect of Planting Methods on Differentiation and Retrogression of Branches and Spikelets of Hybrid Rice Cultivar

LIU Li1,LEI Xiao-Long1,WANG Li1,DENG Fei1,LIU Dai-Yin2,REN Wan-Jun1,*   

  1. 1 College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest China, Chengdu 611130, China; 2 Sichuan General Popularization Centre of Agricultural Technique, Chengdu 610041, China
  • Received:2013-01-14 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-22
  • Contact: 任万军,E-mail: rwjun@126.com

摘要:

为探讨杂交稻机械化播栽技术的穗粒数形成特点,以F498为材料,采用两因素裂区试验设计,研究了3种种植方式和2个穴苗数水平对杂交稻枝梗和颖花分化及退化的影响。结果表明,机械精量穴直播和机插的每穗总枝梗分化数及现存数均高于常规手插,每穗总颖花现存数显著低于常规手插。机械精量穴直播的一次枝梗、颖花分化数和现存数显著高于常规手插,机插的一次枝梗、颖花分化数和现存数则显著低于常规手插。机械精量穴直播和机插的二次枝梗分化数和退化数均显著高于常规手插,二次颖花分化数表现为机插>常规手插>机械精量穴直播,二次颖花现存数则是常规手插>机插>机械精量穴直播。不同种植方式之间,二次枝梗分化数和退化数差异主要集中在稻穗基部,不同一次枝梗部位的二次枝梗现存数呈现先升后降趋势,主要与稻穗基部二次枝梗严重退化有关。每穗一次颖花现存数从穗基部至顶部呈逐渐下降趋势,不同一次枝梗部位的二次颖花现存数差异则与该部位分化二次颖花的能力有关。高穴苗数处理每穗枝梗和颖花分化数及现存数均显著低于低穴苗数处理。考虑种植方式和穴苗数二者的交互效应,机插和常规手插适宜配合低穴苗数,机械精量穴直播则以高穴苗数为宜。

关键词: 水稻, 机直播, 机插, 穴苗数, 枝梗, 颖花

Abstract:

In order to explore the characteristics in spikelets formation of hybrid rice with mechanical sowing and transplanting, the effects of planting method and seedling number per hill on differentiation and retrogression of branches and spikelets were studied using F you 498 in the field experiments. The results showed that the number of differentiated and survived branches in mechanical direct seeding and mechanical transplanting was significantly higher than that in artificial transplanting, however, the survived spikelets in mechanical direct seeding and mechanical transplanting were significantly lower than those in artificial transplanting. The number of differentiated and survived primary branches and spikelets were higher in mechanical direct seeding than in artificial transplanting, while those in mechanical transplanting were the lowest. The numbers of differentiated and retrograded secondary branches in mechanical direct seeding and mechanical transplanting were significantly higher than those in artificial transplanting. However, the number of differentiated secondary spikelets was higher in mechanical transplanting than in artificial transplanting, and was the lowest in mechanical direct seeding. The number of differentiated and retrograded primary and secondary branches and spikelets were significantly lower in high seedling number per hill than in low seedling number per hill. The number differences of differentiated and retrograded secondary branches in all of the planting methods presented mainly on the basal panicle, the number of survived secondary branches showed an increased and then decreased tendency on different primary branches, which was mainly related to the serious secondary branches retrogression. The number of survived primary spikelets decreased from panicle bottom to top, the number of survived secondary spikelets was related to the ability of spikelets differentiation. Therefore, for the effect of interaction between planting methods and seedling number per hill, the low seedling number per hill showed the combined with mechanical transplanting and artificial transplanting, while the high seedling number per hill showed the combined with mechanical direct seeding.

Key words: 水稻, 机直播, 机插, 穴苗数, 枝梗, 颖花

[1]Chen H-Z(陈惠哲), Zhu D-F(朱德峰),Yang S-H(杨仕华), Zhang Y-P(张玉屏), Lin X-Q(林贤青). Rice yield gap and potential of yield increase in the southern China. China Rice (中国稻米), 2004, (4): 9–10 (in Chinese)



[2]Zhu D-F(朱德峰), Cheng S-H(程式华), Zhang Y-P(张玉屏), Lin X-Q(林贤青), Chen H-Z(陈惠哲). Analysis of status and constraints of rice production in the world. Sci Agric Sin (中国农业科学), 2010, 43(3): 474–479 (in Chinese with English abstract)



[3]Hu C-S(胡潮水). Research for the relationship between mechanical rice transplantation and its growth period of rice. Chinese Agricultural Mechanization (中国农机化), 2012, (2): 66–68 (in Chinese with English abstract)



[4]Li J(李杰), Zhang H-C(张洪程), Chang Y(常勇), Gong J-L(龚金龙), Guo Z-H(郭振华), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉). Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. Acta Agron Sin (作物学报), 2011, 37(7): 1235–1248 (in Chinese with English abstract)



[5]Huang M, Zou Y B, Feng Y H, Cheng Z W, Mo Y L, Ibrahim M, Xia B, Jiang P. No-tillage and direct seeding for super hybrid rice production in rice-oilseed rape cropping system. Eur J Agron, 2011, 34: 278–286



[6]Yuan Q(袁奇), Yu L-H(于林惠), Shi S-J(石世杰), Shao J-G(邵建国), Ding Y-F(丁艳锋). Effects of different quantities of planting seedlings per hill on outgrowth and tiller production for machine-transplanted rice. Trans CASE (农业工程学报), 2007, 23(10): 121–125 (in Chinese with English abstract)



[7]Yang B(杨波), Xu D-Y(徐大勇), Zhang H-C(张洪程). Research on growth, yield, quality of rice under direct seeding, mechanical transplanting and artificial transplanting. J Yangzhou Univ (Agric & Life Sci Edn) (扬州大学学报•农业与生命科学版), 2012, 33(2): 39–44 (in Chinese with English abstract)



[8]Satoshi H, Akihiko K, Junko Y, Anuchart K, Boonrat J. Genotypic differences in grain yield of transplanted and direct-seeded rainfed lowland rice (Oryza sativa L.) in northeastern Thailand. Field Crops Res, 2007, 102: 9–21



[9]Li J(李杰), Zhang H-C(张洪程), Gong J-L(龚金龙), Chang Y(常勇), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉). Influence of planting methods on grain-filling properties of super rice. Acta Agron Sin (作物学报), 2011, 37(9): 1631–1641 (in Chinese with English abstract)



[10]Luo X-W(罗锡文), Xie F-P(谢方平), Ou Y-G(区颖刚), Li B-X(李佰祥), Zheng D-K(郑丁科). Experimental investigation of differernt transplanting methods in paddy production. Trans CASE (农业工程学报), 2004, 20(1): 136–139 (in Chinese with English abstract)



[11]Qian Y-F(钱银飞), Zhang H-C(张洪程), Wu W-G(吴文革), Chen Y(陈烨), Li J(李杰), Guo Z-H(郭振华), Zhang Q(张强), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕). Effects of seedlings number per hill on grain yield and quality in different panicle types of mechanical transplanted Japonica rice. Acta Agron Sin (作物学报), 2009, 35(9): 1698–1707 (in Chinese with English abstract) 



[12]Luo H-Y(罗汉亚), Li J(李吉), Yuan Z-H(袁钊和), He R-Y(何瑞银), Ma Z-B(马拯胞), Zhang L(张璐). Coupling relationships of nursing seedling densities and finger sticking area by mechanized hybrid rice transplanter. Trans CASE (农业工程学报), 2009, 25(7):98–102 (in Chinese with English abstract)



[13]Liu X-W(柳新伟), Meng Y-L(孟亚利), Zhou Z-G(周治国), Cao W-X(曹卫星). Dynamic characteristics of floret differentiation and degeneration in rice. Acta Agron Sin (作物学报), 2005, 31(4): 451–455 (in Chinese with English abstract)



[14]Matsushima S(松岛省三), ed. Pang C(庞城), trans. Theory and Technology of Rice Cultivation (稻作理论与技术). Beijing: Agriculture Press, 1966. pp 121–133 (in Chinese)



[15]Pan X-H(潘晓华), Chen X-R(陈小荣), Yang F-S(杨福孙). Formula about basic population under scattered-planting with dry-raised seedling in plastic trays for double-season rice. Chin J Rice Sci (中国水稻科学), 2006, 20(3): 290–294 (in Chinese with English abstract)



[16]Ling Q-H(凌启鸿), Zhang H-C(张洪程), Cai J-Z(蔡建中), Su Z-F(苏祖芳), Ling L(凌励). Investigation on the population quality high yield and its optimizing control programme in rice. Sci Agric Sin (中国农业科学), 1993, 26(6): 1–11 (in Chinese with English abstract)



[17]Takai T, Matsuura S, Nishio T, Ohsumi A, Shiraiwa T, Horie T. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res, 2006, 96: 328–335



[18]Horie T, Shiraiwa T, Homma K, Katsura K, Maeda Y, Yoshida H. Can yields of lowland rice resumes the increases that they showed in the 1980s? Plant Prod Sci, 2005, 8: 259–274



[19]Ling Q-H(凌启鸿). Crop Population Quality (作物群体质量). Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp 63–66 (in Chinese)



[20]Jin C-X(金传旭), Zhong Q-F(钟芹辅), Huang D-Y(黄大英), Liu Y-Q(刘元晴), Wang D-Y(王登云), Liu C-P(刘朝鹏). Effects of transplanting density and seedling number per hole on yield and yield composition of rice. Guizhou Agric Sci (贵州农业科学), 2012, 40(4): 85–87 (in Chinese with English abstract)



[21]Hou L-G(侯立刚), Zhao G-C(赵国臣), Zhao Y-M(赵叶明), Ma W(马巍), Liu L(刘亮), Qi C-Y(齐春雁), Sun H-J(孙洪娇), Guo X-M(郭希明), Sui P-J(隋朋举), Wang H(王晗). Effect of cultivation factors on the yield of different types of super rice. J Jilin Agric Sci(吉林农业科学), 2011, 36(5): 1–4 (in Chinese with English abstract)



[22]Pan X-H(潘晓华), Chen X-R(陈小荣), Yang F-S(杨福孙). Validation of the basic population formulas of dry-land plastic trays seedling-raised with scattered-planting in double-season rice (O. sativa L.). Acta Agric Univ Jiangxiensis (江西农业大学学报), 2006, 28(1): 1–6 (in Chinese with English abstract)



[23]Yang H-J(杨惠杰), Yang R-C(杨仁崔), Li Y-Z(李义珍), Jiang Z-W(姜照伟), Zheng J-S(郑景生). Yield potential and yield components of super high-yielding rice cultivars. Fujian J Agric Sci (福建农业学报), 2000, 15(3): 1–8 (in Chinese with English abstract)



[24]Zhang W-W(张伟伟), Zhu D-F(朱德峰), Zhang Y-P(张玉屏), Chen H-Z(陈惠哲), Lin X-Q(林贤青). Analysis of panicle uniformity and yield of rice hybrid in planting density. Southwest China J Agric Sci (西南农业学报), 2004, 17(6): 720–723 (in Chinese with English abstract)



[25]Yao Y-L(姚友礼), Wang Y-L(王余龙), Cai J-Z(蔡建中). Formation of large panicle in rice (3) Varietal difference of survived spikelet number per panicle and its relations with differentiated spikelet number and biomass at heading. J Jiangsu Agric Coll (江苏农学院学报), 1995, 16(2): 11–16 (in Chinese with English abstract)



[26]Yao Y L, Yamamoto Y, Wang Y L, Miyazaki A, Cai J Z. Numbers of degenerated and surviving spikelets associated with the number of differentiated spikelets among various rice cultivars. Jpn J Trop Agric, 2000, 44: 51–60



[27]Peng C-R(彭春瑞), Dong Q-H(董秋洪), Tu T-H(涂田华), Huang Z-H(黄鬃辉). Studies on the mechanism of large panicle formation for inter-subspecific: I. Features of spikelet formation. Hybrid Rice (杂交水稻), 1995, 10(5): 28–30 (in Chinese with English abstract)



[28]Zeng X-C(曾晓春), Zhou X(周燮), Wu X-Y(吴晓玉). Advances in study of opening mechanism in rice florets. Sci Agric Sin (中国农业科学), 2004, 37(2): 188–195 (in Chinese with English abstract)



[29]Chen H-Z(陈惠哲), Zhu D-F(朱德峰), Lin X-Q(林贤青), Zhang Y-P(张玉屏). Effect of nitrogen levels in spike stage on differentiation and degeneration of branches and spikelet of hybrid rice cultivar Liangyoupeijiu. Acta Agric Zhejiangensis (浙江农业学报), 2008, 20(3): 181–185 (in Chinese with English abstract)



[30]Yang H-J(杨洪建), Yang L-X(杨连新), Huang J-Y(黄建晔), Liu H-J(刘红江), Dong G-C(董桂春), Yan S-M(颜士敏), Zhu J-G(朱建国), Wang Y-L(王余龙). Effect of free-air CO2 enrichment on spikelet differentiation and degeneration of japonica rice (Oryza sativa L.) cultivar Wuxiangjing 14. Acta Agron Sin (作物学报), 2006, 32(7): 1076–1082 (in Chinese with English abstract)



[31]Zhong L(钟蕾), Chen X-R(陈小荣), Hu H-J(胡华金), Wang Q-H(王秋虎), Zheng X-W(郑兴汶), Ren F-Z(任福泽), Pan X-H(潘晓华). Genotypic difference and the classification in response of differentiation and retrogression of branch and spikelet to seeding-date in different hybrid rice parents. Acta Agric Univ Jiangxiensis (江西农业大学学报), 2007, 29(5): 695–700 (in Chinese with English abstract)



[32]Chen X-R(陈小荣), Zhong L(钟蕾), He X-P(贺晓鹏), Fu J-R(傅军如), Xiong K(熊康), He H-H(贺浩华). Effects of genotype and seeding-date on formation of branches and spikelets in rice panicle. Chin J Rice Sci (中国水稻科学), 2006, 20(4): 424–428 (in Chinese with English abstract)



[33]Wu G-N(吴光南), Zhang Y-Q(张云桥). Research of development and controlled ways in the rice. Acta Agron Sin (作物学报), 1962, 1(1): 43–52 (in Chinese)



[34]Ansari T H, Yamamoto Y, Yoshida T, Miyazaki A, Wang Y L. Cultivar differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinants of the spikelet number per panicle in relation to dry matter production and nitrogen absorption. Soil Sci Plant Nutr, 2003, 49: 433–444

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!